首页> 外文期刊>Engineering analysis with boundary elements >Weighted least-squares collocation methods for elliptic PDEs with mixed boundary conditions
【24h】

Weighted least-squares collocation methods for elliptic PDEs with mixed boundary conditions

机译:混合边界条件的椭圆PDE加权最小二乘搭配方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we apply kernel-based collocation methods to elliptic problems with mixed boundary conditions. We propose some weighted least-squares formulations with different weights for the Dirichlet and Neumann boundary collocation terms. Besides fill distance of discrete sets, our weights also depend on other three factors: the proportion of measures of the Dirichlet and Neumann boundaries, dimensionless volume ratios of the boundary and domain, and kernel smoothness. We determine the dependencies of these terms in weights by different numerical tests. Our least-squares formulations can be proved convergent in 112(D). Numerical experiments for two dimensional examples show that we can obtain convergent solutions for kernel smoothness m e {3, 4, 5}in the irregular domains, circle domain, and rectangle thin domain. We also apply our formulations to three dimensional cases and get desired convergent results for m is an element of{4, 5, 6, 7} in cubic, sphere and torus domain under different boundary conditions.
机译:在本文中,我们将基于内核的搭配方法应用于混合边界条件的椭圆问题。我们为Dirichlet和Neumann边界配置术语提出了一些具有不同权重的加权最小二乘配方。除了填充离散套的距离外,我们的体重还取决于其他三个因素:Dirichlet和Neumann边界的测量比例,边界和域的无量体积比,以及核平滑度。我们通过不同的数值测试确定这些术语中这些术语的依赖关系。我们的最小二乘配方可以在112(d)中被证明会聚。二维示例的数值实验表明,我们可以在不规则结构域,圆域和矩形薄域中获得用于内核平滑度M e {3,4,5}的收敛溶液。我们还将调整应用于三维案例,并在不同的边界条件下,M的M用于立方,球体和圆环结构域中的{4,5,6,7}的元素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号