首页> 外文期刊>Energy & environmental science >Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodest
【24h】

Optical, electrical, and solar energy-conversion properties of gallium arsenide nanowire-array photoanodest

机译:砷化镓纳米线阵列光阳极的光,电和太阳能转换特性

获取原文
获取原文并翻译 | 示例
           

摘要

Periodic arrays of n-GaAs nanowires have been grown by selective-area metal-organic chemical-vapor deposition on Si and GaAs substrates. The optical absorption characteristics of the nanowire-arrays were investigated experimentally and theoretically, and the photoelectrochemical energy-conversion properties of GaAs nanowire arrays were evaluated in contact with one-electron, reversible, redox species in non-aqueous solvents. The radial semiconductor/liquid junction in the nanowires produced near-unity external carrier-collection efficiencies for nanowire-array photoanodes in contact with non-aqueous electrolytes. These anodes exhibited overall inherent photoelectrode energy-conversion efficiencies of ~8.1% under 100 mW cm~(-2) simulated Air Mass 1.5 illumination, with open-circuit photovoltages of 590 ± 15 mV and short-circuit current densities of 24.6 ± 2.0 mA cm~(-2). The high optical absorption, and minimal reflection, at both normal and off-normal incidence of the GaAs nanowire arrays that occupy <5% of the fractional area of the electrode can be attributed to efficient incoupling into radial nanowire guided and leaky waveguide modes.
机译:通过在Si和GaAs衬底上进行选择性区域金属有机化学气相沉积,可以生长n-GaAs纳米线的周期性阵列。实验和理论上研究了纳米线阵列的光吸收特性,并在非水溶剂中与单电子可逆氧化还原物质接触评估了GaAs纳米线阵列的光电化学能量转换特性。纳米线中的径向半导体/液体结产生了与非水电解质接触的纳米线阵列光阳极接近统一的外部载流子收集效率。这些阳极在100 mW cm〜(-2)模拟的空气质量1.5光照下表现出约8.1%的整体固有光电极能量转换效率,开路光电压为590±15 mV,短路电流密度为24.6±2.0 mA厘米〜(-2)。 GaAs纳米线阵列在法向和非法线入射时的高光吸收和最小反射(占电极分数面积的5%)可以归因于有效地耦合到径向纳米线引导和泄漏波导模式中。

著录项

  • 来源
    《Energy & environmental science》 |2013年第6期|1879-1890|共12页
  • 作者单位

    Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA,Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E.California Blvd., Pasadena, CA, 91125, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California,Los Angeles, CA, USA;

    Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA,Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E.California Blvd., Pasadena, CA, 91125, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California,Los Angeles, CA, USA;

    Department of Applied Physics and Materials Science, California Institute of Technology, Pasadena, CA, 91125, USA,Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E.California Blvd., Pasadena, CA, 91125, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California,Los Angeles, CA, USA;

    Division of Chemistry and Chemical Engineering, 210 Noyes Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA,Joint Center for Artificial Photosynthesis, California Institute of Technology, 1200 E.California Blvd., Pasadena, CA, 91125, USA;

    Ming Hsieh Department of Electrical Engineering, University of Southern California,Los Angeles, CA, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号