首页> 外文期刊>IEEE Transactions on Energy Conversion >Nonlinear Performance Degradation Prediction of Proton Exchange Membrane Fuel Cells Using Relevance Vector Machine
【24h】

Nonlinear Performance Degradation Prediction of Proton Exchange Membrane Fuel Cells Using Relevance Vector Machine

机译:关联向量机预测质子交换膜燃料电池的非线性性能退化

获取原文
获取原文并翻译 | 示例

摘要

Environmental issues, especially global warming due to the greenhouse effect, have become more and more critical in recent decades. As one potential candidate among different alternative “green energy” solutions for sustainable development, the proton exchange membrane fuel cell (PEMFC) has received extensive research attention for many years for energy and transportation applications. However, the relatively short lifespan of PEMFCs operating under non-steady-state conditions (for vehicles, for example) impedes its massive use. The accurate prediction of their aging mechanisms can thus help to design proper maintenance patterns of PEMFCs by providing foreseeable performance degradation information. In addition, the prediction could also help to avoid or mitigate the unwanted degradation of PEMFC systems during operation. In this paper, an advanced self-adaptive relevance vector machine (RVM) has been developed and demonstrated to predict the performance degradation of PEMFCs. In order to prove the versatility of proposed RVM method, the predictive results are experimentally validated using two different PEMFC stacks aging data under different operating patterns. Furthermore, the obtained results are compared with results from both classic support vector machine and original RVM methods in order to highlight the effectiveness of the proposed self-adaptive RVM method with a modified design matrix. A comparison between single-step-ahead and multiple-step-ahead predictions of the proposed method is also given and discussed. The results show that the proposed novel RVM method is powerful and effective for PEMFC degradation prediction.
机译:在最近的几十年中,环境问题,尤其是由于温室效应引起的全球变暖,变得越来越关键。作为可持续发展的不同替代“绿色能源”解决方案中的一个潜在候选者,质子交换膜燃料电池(PEMFC)多年来在能源和运输应用领域受到了广泛的研究关注。但是,在非稳态条件下运行的PEMFC的寿命相对较短(例如,用于车辆),阻碍了其的广泛使用。因此,通过提供可预见的性能下降信息,可以准确预测其老化机制,从而有助于设计PEMFC的正确维护模式。此外,该预测还可以帮助避免或减轻PEMFC系统在运行期间的不必要降级。在本文中,已经开发了先进的自适应相关向量机(RVM)并进行了演示,以预测PEMFC的性能下降。为了证明所提出的RVM方法的多功能性,使用两个不同的PEMFC堆栈在不同的操作模式下的老化数据,通过实验验证了预测结果。此外,将获得的结果与经典支持向量机和原始RVM方法的结果进行比较,以突出具有改进设计矩阵的拟议自适应RVM方法的有效性。还给出并讨论了所提方法的单步预测和多步预测之间的比较。结果表明,所提出的新颖的RVM方法对于PEMFC降解预测是有效的。

著录项

  • 来源
    《IEEE Transactions on Energy Conversion》 |2016年第4期|1570-1582|共13页
  • 作者单位

    are with the Department of Energy, University of Technology in Belfort-Montebéliard, Belfort, France;

    Department of Electrical Engineering, Technical University of Cluj-Napoca, Cluj-Napoca, Romania;

    are with the Department of Energy, University of Technology in Belfort-Montebéliard, Belfort, France;

    are with the Department of Energy, University of Technology in Belfort-Montebéliard, Belfort, France;

    are with the Department of Energy, University of Technology in Belfort-Montebéliard, Belfort, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Degradation; Fuel cells; Support vector machines; Aging; Protons; Hydrogen; Electric potential;

    机译:降解;燃料电池;支持向量机;老化;质子;氢;电势;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号