首页> 外文期刊>Empirical Software Engineering >An empirical assessment of best-answer prediction models in technical Q&A sites
【24h】

An empirical assessment of best-answer prediction models in technical Q&A sites

机译:对技术问答网站中最佳答案预测模型的实证评估

获取原文
获取原文并翻译 | 示例

摘要

Technical Q&A sites have become essential for software engineers as they constantly seek help from other experts to solve their work problems. Despite their success, many questions remain unresolved, sometimes because the asker does not acknowledge any helpful answer. In these cases, an information seeker can only browse all the answers within a question thread to assess their quality as potential solutions. We approach this time-consuming problem as a binary-classification task where a best-answer prediction model is built to identify the accepted answer among those within a resolved question thread, and the candidate solutions to those questions that have received answers but are still unresolved. In this paper, we report on a study aimed at assessing 26 best-answer prediction models in two steps. First, we study how models perform when predicting best answers in Stack Overflow, the most popular Q&A site for software engineers. Then, we assess performance in a cross-platform setting where the prediction models are trained on Stack Overflow and tested on other technical Q&A sites. Our findings show that the choice of the classifier and automatied parameter tuning have a large impact on the prediction of the best answer. We also demonstrate that our approach to the best-answer prediction problem is generalizable across technical Q&A sites. Finally, we provide practical recommendations to Q&A platform designers to curate and preserve the crowdsourced knowledge shared through these sites.
机译:技术问答网站对于软件工程师来说至关重要,因为他们不断寻求其他专家的帮助来解决他们的工作问题。尽管取得了成功,但许多问题仍未解决,有时是因为询问者没有认可任何有用的答案。在这些情况下,信息搜索者只能浏览问题线索中的所有答案,以评估其作为潜在解决方案的质量。我们将此耗时的问题视为二进制分类任务,其中建立了最佳答案预测模型以在已解决的问题线程中识别那些已接受的答案,以及已收到答案但仍未解决的那些问题的候选解决方案。在本文中,我们报告了一项旨在分两步评估26个最佳答案预测模型的研究。首先,我们研究在Stack Overflow(最流行的软件工程师问答网站)中预测最佳答案时模型的性能。然后,我们在跨平台设置中评估性能,在该设置中,对预测模型进行Stack Overflow训练,并在其他技术问答站点进行测试。我们的发现表明,分类器的选择和自动参数调整对最佳答案的预测有很大影响。我们还证明,我们针对最佳答案预测问题的方法可在技术问答网站上推广。最后,我们向问答平台设计人员提供实用建议,以策划和保存通过这些站点共享的众包知识。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号