首页> 外文期刊>Emerging Topics in Computing, IEEE Transactions on >Energy-Aware Bio-Signal Compressed Sensing Reconstruction on the WBSN-Gateway
【24h】

Energy-Aware Bio-Signal Compressed Sensing Reconstruction on the WBSN-Gateway

机译:WBSN网关上的能量感知型生物信号压缩传感重建

获取原文
获取原文并翻译 | 示例

摘要

Technology scaling enables today the design of ultra-low power wearable bio-sensors for continuous vital signs monitoring or wellness applications. Such bio-sensing nodes are typically integrated in Wireless Body Sensor Network (WBSN) to acquire and process biomedical signals, e.g., Electrocardiogram (ECG), and transmit them to the WBSN gateway, e.g., smartphone, for online reconstruction or features extraction. Both bio-sensing node and gateway are battery powered devices, although they show very different autonomy requirements (weeks versus days). Thenrakenessn-based Compressed Sensing (CS) proved to outperform standard CS, achieving a higher compression for the same quality level, therefore reducing the transmission costs in the node. However, most of the research focus has been on the efficiency of the node, neglecting the energy cost of the CS decoder. In this work, we evaluate the energy cost and real-time reconstruction feasibility on the gateway, considering different signal reconstruction algorithms running on a heterogeneous mobile SoC based on the ARM big.LITTLEnTMnarchitecture. The experimental results show that it is not always possible to obtain the theoretical QoS under real-time constraints. Moreover, the standard CS does not satisfy real-time constraints, while the rakeness enables different QoS-energy trade-offs. Finally, we show that in the optimal setup (OMP,n$n=128$n) heterogeneous architectures make the CS decoding task suitable for wearable devices oriented to long-term ECG monitoring.
机译:如今,技术的扩展使得能够设计用于连续生命体征监测或健康应用的超低功率可穿戴生物传感器。此类生物感测节点通常集成在无线人体传感器网络(WBSN)中,以获取和处理生物医学信号(例如心电图(ECG)),并将其传输到WBSN网关(例如智能手机)以进行在线重建或特征提取。生物传感节点和网关都是电池供电的设备,尽管它们显示出非常不同的自治性要求(数周与数天)。然后 rakeness n事实证明,基于压缩的感知(CS)优于标准CS,在相同的质量水平下实现了更高的压缩,因此降低了节点的传输成本。但是,大多数研究焦点都集中在节点的效率上,而忽略了CS解码器的能源成本。在这项工作中,我们考虑了在基于ARM big的异构移动SoC上运行的不同信号重构算法,评估了网关的能源成本和实时重构可行性。LITTLEn TM 架构。实验结果表明,在实时约束下并非总是能够获得理论上的QoS。此外,标准CS不满足实时约束,而倾斜度可实现不同的QoS能量折衷。最后,我们证明了在最佳设置中(OMP,n $ n = 128 $ n)异构架构使CS解码任务适用于面向长期ECG监测的可穿戴设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号