The shot noise in double-barrier diodes is analyzed using the stationary-state approach to resonant tunneling through the first quasi-bound level. Significant deviations from full shot noise are predicted. Significant shot noise suppression occurs in the entire positive differential resistance region below the current peak, and shot noise enhancement occurs in the negative differential resistance region above the peak. The physical basis for these effects is assumed to be the modulation of the double-barrier transmission probability by charge stored in the first quasi-bound level in the quantum well. The analysis confirms microwave noise measurements of high-speed double-barrier diodes.
展开▼