首页> 外文期刊>Electron Devices, IEEE Transactions on >Low-Energy Robust Neuromorphic Computation Using Synaptic Devices
【24h】

Low-Energy Robust Neuromorphic Computation Using Synaptic Devices

机译:使用突触设备的低能量鲁棒神经形态计算

获取原文
获取原文并翻译 | 示例

摘要

Brain-inspired computing is an emerging field, which aims to reach brainlike performance in real-time processing of sensory data. The challenges that need to be addressed toward reaching such a computational system include building a compact massively parallel architecture with scalable interconnection devices, ultralow-power consumption, and robust neuromorphic computational schemes for implementation of learning in hardware. In this paper, we discuss programming strategies, material characteristics, and spike schemes, which enable implementation of symmetric and asymmetric synaptic plasticity with devices using phase-change materials. We demonstrate that energy consumption can be optimized by tuning the device operation regime and the spike scheme. Our simulations illustrate that a crossbar array consisting of synaptic devices and neurons can achieve hippocampus-like associative learning with symmetric synapses and sequence learning with asymmetric synapses. Pattern completion for patterns with 50$%$ missing elements is achieved via associative learning with symmetric plasticity. Robustness of learning against input noise, variation in sensory data, and device resistance variation are investigated through simulations.
机译:灵感来自大脑的计算是一个新兴领域,旨在在实时处理感官数据时达到类似大脑的性能。达到这样一种计算系统需要解决的挑战包括建立一个具有可扩展互连设备的紧凑的大规模并行体系结构,超低功耗以及用于在硬件中实现学习的强大的神经形态计算方案。在本文中,我们讨论了编程策略,材料特性和尖峰方案,这些方案使使用相变材料的设备能够实现对称和不对称的突触可塑性。我们证明,可以通过调整器件的运行方式和尖峰方案来优化能耗。我们的仿真表明,由突触设备和神经元组成的交叉开关阵列可以通过对称突触实现海马样联想学习,而通过非对称突触实现序列学习。具有50 %%%缺失元素的图案的图案完成是通过具有对称可塑性的关联学习实现的。通过仿真研究了针对输入噪声,感觉数据变化以及器件电阻变化的学习鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号