首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity
【2h】

Compensating Inhomogeneities of Neuromorphic VLSI Devices Via Short-Term Synaptic Plasticity

机译:通过短期突触可塑性补偿神经形态VLSI装置的不均匀性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent developments in neuromorphic hardware engineering make mixed-signal VLSI neural network models promising candidates for neuroscientific research tools and massively parallel computing devices, especially for tasks which exhaust the computing power of software simulations. Still, like all analog hardware systems, neuromorphic models suffer from a constricted configurability and production-related fluctuations of device characteristics. Since also future systems, involving ever-smaller structures, will inevitably exhibit such inhomogeneities on the unit level, self-regulation properties become a crucial requirement for their successful operation. By applying a cortically inspired self-adjusting network architecture, we show that the activity of generic spiking neural networks emulated on a neuromorphic hardware system can be kept within a biologically realistic firing regime and gain a remarkable robustness against transistor-level variations. As a first approach of this kind in engineering practice, the short-term synaptic depression and facilitation mechanisms implemented within an analog VLSI model of I&F neurons are functionally utilized for the purpose of network level stabilization. We present experimental data acquired both from the hardware model and from comparative software simulations which prove the applicability of the employed paradigm to neuromorphic VLSI devices.
机译:神经形态硬件工程的最新发展使得混合信号VLSI神经网络模型有望成为神经科学研究工具和大规模并行计算设备的候选对象,特别是对于那些耗尽软件仿真计算能力的任务。仍然,像所有模拟硬件系统一样,神经形态模型的可配置性受到限制,并且与设备特性相关的生产相关波动。由于未来涉及较小结构的系统也不可避免地会在单元级别上表现出这种不均匀性,因此自调节性能成为其成功运行的关键要求。通过应用皮质激发的自我调节网络体系结构,我们证明了在神经形态硬件系统上模拟的通用尖峰神经网络的活动可以保持在生物学上逼真的触发机制内,并获得针对晶体管级变化的显着鲁棒性。作为工程实践中的第一种方法,在I&F神经元的模拟VLSI模型中实施的短期突触抑制和促进机制在功能上用于网络级稳定的目的。我们介绍了从硬件模型和比较软件仿真中获得的实验数据,这些数据证明了所采用范例对神经形态VLSI设备的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号