首页> 外文期刊>IEEE Transactions on Electron Devices >Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses
【24h】

Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses

机译:使用二进制CBRAM突触的生物启发式随机计算

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an alternative approach to neuromorphic systems based on multilevel resistive memory synapses and deterministic learning rules. We demonstrate an original methodology to use conductive-bridge RAM (CBRAM) devices as, easy to program and low-power, binary synapses with stochastic learning rules. New circuit architecture, programming strategy, and probabilistic spike-timing dependent plasticity (STDP) learning rule for two different CBRAM configurations with-selector (1T-1R) and without-selector (1R) are proposed. We show two methods (intrinsic and extrinsic) for implementing probabilistic STDP rules. Fully unsupervised learning with binary synapses is illustrated through two example applications: 1) real-time auditory pattern extraction (inspired from a 64-channel silicon cochlea emulator); and 2) visual pattern extraction (inspired from the processing inside visual cortex). High accuracy (audio pattern sensitivity ${>}{2}$, video detection rate ${>}{rm 95}%$) and low synaptic-power dissipation (audio 0.55 $mu{rm W}$, video 74.2 $mu{rm W}$) are shown. The robustness and impact of synaptic parameter variability on system performance are also analyzed.
机译:在本文中,我们提出了一种基于多级电阻性记忆突触和确定性学习规则的神经形态系统的替代方法。我们演示了一种使用导电桥RAM(CBRAM)设备的原始方法,该方法易于编程且具有随机学习规则的低功耗二进制突触。针对具有选择器(1T-1R)和不具有选择器(1R)的两种不同的CBRAM配置,提出了新的电路架构,编程策略和概率性依赖于尖峰时序的可塑性(STDP)学习规则。我们展示了实现概率性STDP规则的两种方法(内部和外部)。通过两个示例应用说明了具有二进制突触的完全无监督学习:1)实时听觉模式提取(灵感来自64通道硅耳蜗仿真器); 2)视觉模式提取(灵感来自视觉皮层内部的处理)。高精度(音频模式灵敏度 $ {>} {2} $ ,视频检测率 $ {>} {rm 95}%$ )和低突触功耗(音频0.55 $ mu {rm W} $ ,视频74.2 $ mu {rm W} $ )。还分析了突触参数可变性对系统性能的鲁棒性和影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号