首页> 外文期刊>Electron Devices, IEEE Transactions on >Comparative Performance Analysis of the Dielectrically Modulated Full- Gate and Short-Gate Tunnel FET-Based Biosensors
【24h】

Comparative Performance Analysis of the Dielectrically Modulated Full- Gate and Short-Gate Tunnel FET-Based Biosensors

机译:基于介电调制的全栅极和短栅极隧道FET的生物传感器的比较性能分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a short-gate tunneling-field-effect-transistor (SG-TFET) structure has been investigated for the dielectrically modulated biosensing applications in comparison with a full-gate tunneling-field-effect-transistor structure of similar dimensions. This paper explores the underlying physics of these architectures and estimates their comparative sensing performance. The sensing performance has been evaluated for both the charged and charge-neutral biomolecules using extensive device-level simulation, and the effects of the biomolecule dielectric constant and charge density are also studied. In SG-TFET architecture, the reduction of the gate length enhances its drain control over the band-to-band tunneling process and this has been exploited for the detection, resulting to superior drain current sensitivity for biomolecule conjugation. The gate and drain biasing conditions show dominant impact on the sensitivity enhancement in the short-gate biosensors. Therefore, the gate and drain bias are identified as the effective design parameters for the efficiency optimization.
机译:与具有类似尺寸的全栅隧穿场效应晶体管结构相比,本文针对介电调制生物传感应用研究了短栅隧穿场效应晶体管(SG-TFET)结构。本文探讨了这些架构的基本物理原理,并估计了它们的比较传感性能。已使用广泛的设备级仿真对带电和中性生物分子的感测性能进行了评估,并且还研究了生物分子介电常数和电荷密度的影响。在SG-TFET架构中,栅极长度的减小增强了其对带间隧穿过程的漏极控制,这已被用于检测,从而为生物分子结合提供了卓越的漏极电流灵敏度。栅极和漏极偏置条件显示出对短栅极生物传感器灵敏度提高的主要影响。因此,栅极和漏极偏置被确定为效率优化的有效设计参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号