首页> 外文期刊>IEEE Transactions on Electron Devices >Impacts of State Instability and Retention Failure of Filamentary Analog RRAM on the Performance of Deep Neural Network
【24h】

Impacts of State Instability and Retention Failure of Filamentary Analog RRAM on the Performance of Deep Neural Network

机译:丝状模拟RRAM的状态不稳定性和保留失败对深层神经网络性能的影响

获取原文
获取原文并翻译 | 示例

摘要

In this work, an evaluation methodology is proposed to study the impacts of state instability and retention failure of filamentary analog resistive random access memory (FA-RRAM) on the performance of deep neural networks (DNNs). Based on the methodology, an analytic model for the statistical state instability and retention behaviors is applied to evaluate the impacts of the reliability of FA-RRAM on an 11-layer FA-RRAM-based DNN for CIFAR-10 recognition. Simulations indicate that the recognition accuracy of the 11-layer DNN decreases rapidly with the increase of the baking time (t = 10(4)s, 16.3% accuracy loss at 125 degrees C) due to the overlapping among neighboring resistance levels. To mitigate the accuracy loss caused by state instability and retention failure, the optimization method including the optimized synapse cell and the refresh operation scheme is developed. With the optimization method, the robustness of the FA-RRAM-based DNN is enhanced significantly in which no accuracy loss is observed even after 10(7)s (at 125 degrees C, 5 x 10(3) s/refresh).
机译:在这项工作中,提出了一种评估方法,以研究状态不稳定性和丝状模拟电阻式随机存取存储器(FA-RRAM)的保留失败对深度神经网络(DNN)性能的影响。基于该方法,使用统计状态不稳定性和保留行为的分析模型来评估FA-RRAM的可靠性对基于11层基于FA-RRAM的DNN进行CIFAR-10识别的影响。仿真表明,由于相邻电阻水平之间的重叠,11层DNN的识别精度随烘烤时间的增加而迅速降低(t = 10(4)s,在125摄氏度时精度下降16.3%)。为了减轻由于状态不稳定和保持失败而导致的精度损失,开发了包括优化的突触单元和刷新操作方案的优化方法。通过优化方法,基于FA-RRAM的DNN的鲁棒性得到了显着提高,即使在10(7)s(在125摄氏度,5 x 10(3)s /刷新)后也没有观察到精度损失。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号