首页> 外文期刊>Electron Devices, IEEE Transactions on >Two-Step Read Scheme in One-Selector and One-RRAM Crossbar-Based Neural Network for Improved Inference Robustness
【24h】

Two-Step Read Scheme in One-Selector and One-RRAM Crossbar-Based Neural Network for Improved Inference Robustness

机译:一站式和基于RRAM Crossbar的神经网络中的两步读取方案可提高推理的鲁棒性

获取原文
获取原文并翻译 | 示例

摘要

Introducing a threshold switching selector in a resistive random access memory (RRAM) is essential for implementing a crossbar array that accurately accelerates neuromorphic computations. But, at an expense, a read voltage (Vread) to be used for inference tasks is inevitably boosted. Therefore, this brief shows the effect of the enlarged Vread on the stability of conductance states of the RRAM relevant to the inference robustness. The multiple conductance states of the analog RRAM achieved by a SPICE simulation are stable under consecutive 106 cycles of nominal Vread. However, each state of the one selector and one RRAM begins to be disturbed at ~104 cycles due to the boosted Vread. More importantly, when a certain state exceeds to the next state due to the accumulated Vread stress, a classification accuracy of the neural network is significantly degraded. We, thus, introduce a two-step read scheme that separates the roles of turning on the selector and reading the states. As the selector is turned on rapidly with an additional large pulse, the following Vread can be lowered. As a result, the read disturbance is minimized, and the optimized two-step pulse scheme allows 106 MNIST images to be recognized with >95% accuracy in the neural network.
机译:在电阻性随机存取存储器(RRAM)中引入阈值切换选择器对于实现可精确加速神经形态计算的交叉开关阵列至关重要。但是,不可避免地要提高用于推理任务的读取电压(Vread)。因此,本简介显示了增大的Vread对与推理鲁棒性相关的RRAM电导状态稳定性的影响。通过SPICE仿真获得的模拟RRAM的多电导状态在标称Vread的连续106个周期内保持稳定。但是,由于提升了Vread,一个选择器和一个RRAM的每种状态在约104个周期时开始受到干扰。更重要的是,当由于累积的Vread应力而导致某个状态超过下一个状态时,神经网络的分类精度将大大降低。因此,我们引入了两步读取方案,该方案将打开选择器和读取状态的作用分开。当选择器通过一个额外的大脉冲快速打开时,随后的Vread可以降低。结果,最小化了读取干扰,并且优化的两步脉冲方案允许在神经网络中以> 95%的精度识别106个MNIST图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号