首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >TraNNsformer: Clustered Pruning on Crossbar-Based Architectures for Energy-Efficient Neural Networks
【24h】

TraNNsformer: Clustered Pruning on Crossbar-Based Architectures for Energy-Efficient Neural Networks

机译:变压器:节能神经网络横杆架构的群集修剪

获取原文
获取原文并翻译 | 示例

摘要

Implementation of neuromorphic systems using memristive crossbar array (MCA) has emerged as a promising solution to enable low-power acceleration of neural networks. However, the recent trend to design deep neural networks (DNNs) for achieving human-like cognitive abilities poses significant challenges toward the scalable design of neuromorphic systems (due to the increase in computation/storage demands). Network pruning is a powerful technique to remove redundant connections for designing optimally connected (maximally sparse) DNNs. However, such pruning techniques induce irregular connections that are incoherent to the crossbar structure. Eventually, they produce DNNs with highly inefficient hardware realizations (in terms of area and energy). In this article, we propose TraNNsformer-an integrated training framework that transforms DNNs to enable their efficient realization on MCA-based systems. TraNNsformer first prunes the connectivity matrix while forming clusters with the remaining connections. Subsequently, it retrains the network to fine-tune the connections and reinforce the clusters. This is done iteratively to transform the original connectivity into an optimally pruned and maximally clustered mapping. We evaluated the proposed framework by transforming networks of different complexity based on multilayer perceptron (MLP) and convolutional neural network (CNN) topologies on a wide range of datasets (MNIST, SVHN, CIFAR10, and ImageNet) and executing them on MCA-based systems to analyze the area and energy benefits. Without accuracy loss, TraNNsformer reduces the area (energy) consumption by 28%-55% (49%-67%)of MLP networks and by 28%-48% (3%-39%) of CNN networks with respect to the original network implementations. Compared to network pruning, TraNNsformer achieves 28%-49% (15%-29%) area (energy) savings for MLP networks and 20%-44% (1%-11%) area (energy) saving for CNN networks. Furthermore, TraNNsformer is a technology-aware framework that allows mapping a given DNN to any MCA size permissible by the memristive technology for reliable operations.
机译:使用Memristive CrossBar阵列(MCA)的神经晶体系统的实现已成为一种有希望的解决方案,以实现神经网络的低功率加速度。然而,近期设计深度神经网络(DNN)的趋势(DNN),用于实现人类的认知能力朝着神经形态系统的可扩展设计构成了重大挑战(由于计算/存储需求的增加)。网络修剪是一种强大的技术,可以消除用于设计最佳连接(最大稀疏)DNN的冗余连接。然而,这种修剪技术诱导不规则的连接,其不相连地对横杆结构。最终,它们产生具有高效硬件实现的DNN(在区域和能量方面)。在本文中,我们提出了Trannsformer - 一个集成的培训框架,转换DNN,以便在基于MCA的系统上实现其有效的实现。 Trannsformer首先将连接矩阵修剪,同时形成具有剩余连接的簇。随后,它删除了网络以微调连接并加强群集。这是迭代地进行,以将原始连接转换为最佳修剪和最大群集的映射。我们通过基于多层的Perceptron(MLP)和卷积神经网络(CNN)拓扑在广泛的数据集(MNIST,SVHN,CNN,CIFAR10和ImageNet)上转换不同复杂性的网络来评估所提出的框架,并在基于MCA的系统上执行它们分析该地区和能源效益。无需精度损失,Trannsformer将区域(能量)消耗降低28%-55%(49%-67%)的MLP网络和关于原始CNN网络的28%-48%(3%-39%)网络实现。与网络修剪相比,Trannsformer达到MLP网络的28%-49%(15%-29%)区域(能量)节省,为CNN网络节省了20%-44%(1%-11%)区域(能源)。此外,Trannsformer是一种技术感知框架,允许将给定DNN映射到任何由Memristive技术允许的MCA大小进行可靠操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号