首页> 外文期刊>Electromagnetic Compatibility, IEEE Transactions on >Machine Learning Based Source Reconstruction for RF Desense
【24h】

Machine Learning Based Source Reconstruction for RF Desense

机译:基于机器学习的射频重构源重构

获取原文
获取原文并翻译 | 示例

摘要

In radio frequency interference study, equivalent dipole moments are widely used to reconstruct real radiation noise sources. Previous reconstruction methods, such as least square method (LSQ) and optimization method are affected by parameter selections, such as number and locations of dipole moments and choices of initial values. In this paper, a new machine learning based source reconstruction method is developed to extract the equivalent dipole moments more accurately and reliably. Based on the near-field patterns, the proposed method can determine the minimal number of dipole moments and their corresponding locations. Furthermore, the magnitude and phase for each dipole moment can be extracted. The proposed method can extract the dominant dipole moments for the unknown noise sources one by one. The proposed method is applied to a few theoretical examples first. The measurement validation using a test board and a practical cellphone are also given. Compared to the conventional LSQ method, the proposed machine learning based method is believed to have a better accuracy. Also, it is more reliable in handling noise in practical applications.
机译:在射频干扰研究中,等效偶极矩被广泛用于重建实际的辐射噪声源。诸如最小二乘法(LSQ)和优化方法之类的先前重建方法受参数选择的影响,例如偶极矩的数量和位置以及初始值的选择。本文提出了一种新的基于机器学习的源重构方法,以更精确,更可靠地提取等效偶极矩。基于近场模式,该方法可以确定偶极矩的最小数量及其对应的位置。此外,可以提取每个偶极矩的大小和相位。所提方法可以一一提取未知噪声源的主导偶极矩。该方法首先应用于一些理论实例。还给出了使用测试板和实用手机进行的测量验证。与传统的LSQ方法相比,该基于机器学习的方法被认为具有更好的准确性。而且,在实际应用中处理噪声时更加可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号