首页> 外文期刊>Discrete and continuous dynamical systems >HOPF BIFURCATION OF A CLASS OF TWO COUPLED RELAXATION OSCILLATORS OF THE VAN DER POL TYPE WITH DELAY
【24h】

HOPF BIFURCATION OF A CLASS OF TWO COUPLED RELAXATION OSCILLATORS OF THE VAN DER POL TYPE WITH DELAY

机译:一类带延迟的范德波尔型两个耦合弛豫振荡器的Hopf分支

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we study the following system of two coupled relaxation oscillators of the van der Pol type with delayrn{εxe_1-(1-x_1~2)x_1+x_1=h_1(x_2(t-τ)-x_1(t-τ)),rnεxe_2-(1-x_2~2)x_2+x_2=h_2(x_1(t-τ)-x_2(t-τ)),rnwhere h_1 and h_1 are nonlinear functions. It is shown that this system can exhibit Hopf bifurcation as the time delay τ passes certain critical values. The distribution of the eigenvalues of the linearized system is studied thoroughly in terms of the parameter e and the linear parts of functions h_1 and h_2. The normal form theory for general retarded functional equations developed by Faria and Magalhaes is applied to perform center manifold reduction and hence to obtain the explicit normal form Hopf bifurcation which can be used to determine the stability of the bifurcating periodic solutions and and the direction of Hopf bifurcation. Examples are given to confirm the theoretical results.
机译:在本文中,我们研究具有延迟rn {εxe_1-(1-x_1〜2)x_1 + x_1 = h_1(x_2(t-τ)-x_1(t-τ) )),rnεxe_2-(1-x_2〜2)x_2 + x_2 = h_2(x_1(t-τ)-x_2(t-τ)),rn_1和h_1是非线性函数。结果表明,该系统在时间延迟τ超过某些临界值时会表现出Hopf分叉。根据参数e以及函数h_1和h_2的线性部分,对线性化系统特征值的分布进行了深入研究。将Faria和Magalhaes提出的一般延迟函数方程的范式理论应用于中心流形约简,从而获得明确的范式Hopf分支,可用于确定分支周期解的稳定性以及Hopf的方向分叉。举例说明了理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号