首页> 外文期刊>Discrete and continuous dynamical systems >BIFURCATIONS OF AN SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE
【24h】

BIFURCATIONS OF AN SIRS EPIDEMIC MODEL WITH NONLINEAR INCIDENCE RATE

机译:具有非线性发生率的SIRS传染病模型的分岔。

获取原文
获取原文并翻译 | 示例

摘要

The main purpose of this paper is to explore the dynamics of an epidemic model with a general nonlinear incidence βSI~P/(I+αI~q). The existence and stability of multiple endemic equilibria of the epidemic model are analyzed. Local bifurcation theory is applied to explore the rich dynamical behavior of the model. Normal forms of the model are derived for different types of bifurcations, including Hopf and Bogdanov-Takens bifurcations. Concretely speaking, the first Lyapunov coefficient is computed to determine various types of Hopf bifurcations. Next, with the help of the Bogdanov-Takens normal form, a family of homoclinic orbits is arising when a Hopf and a saddle-node bifurcation merge.Finally,some numerical results and simulations are presented to illustrate these theoretical results.
机译:本文的主要目的是探索具有一般非线性事件βSI〜P /(I +αI〜q)的传染病模型的动力学。分析了流行病模型的多种地方均衡的存在性和稳定性。应用局部分叉理论来探索模型的丰富动力学行为。该模型的正常形式是针对不同类型的分叉得出的,包括Hopf和Bogdanov-Takens分叉。具体而言,计算第一李雅普诺夫系数以确定各种类型的霍夫夫分支。接下来,借助Bogdanov-Takens正规形,当Hopf和鞍形节点分叉合并时,产生了一系列同斜轨道。最后,给出了一些数值结果和仿真来说明这些理论结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号