机译:具有非线性发生率的SIRS传染病模型的分岔。
Department of Applied Mathematics and Mechanics University of Science and Technology Beijing Beijing 100083,China;
Department of Mathematics,East China Normal University Shanghai 200062,China;
Department of Applied Mathematics and Mechanics University of Science and Technology Beijing Beijing 100083, China;
Department of Mathematics,University of Miami Coral Gables,FL 33124-4250, USA;
sirs epidemic model; nonlinear incidence rate; stability; hopf bifurcation; bogdanov-takens bifurcation;
机译:具有非线性发病率的分数阶SIRS流行病模型的向后分叉分叉
机译:LOPF延迟SIRS流行病模型的跳跃分叉具有新型非线性发病率:猩红热的应用
机译:具有新型非线性事件的时滞SIRS流行病模型的Hopf分叉:在猩红热中的应用
机译:具有接种和非线性发生率的时滞SIRS传染病模型的稳定性分析。
机译:非线性动力学系统中平衡态和分叉的可靠位置及其在食物网建模和化学工程中的应用
机译:具有广义非单调和饱和发生率的SIRS流行病模型的分叉分析
机译:具有非线性入射率的sIRs流行病模型的分岔