首页> 外文期刊>Discrete and continuous dynamical systems >BAUTIN BIFURCATION IN DELAYED REACTION-DIFFUSION SYSTEMS WITH APPLICATION
【24h】

BAUTIN BIFURCATION IN DELAYED REACTION-DIFFUSION SYSTEMS WITH APPLICATION

机译:时滞反应扩散系统中的Bautin分叉及其应用

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present an algorithm for deriving the normal forms of Bautin bifurcations in reaction-diffusion systems with time delays and Neumann boundary conditions. On the center manifold near a Bautin bifurcation, the first and second Lyapunov coefficients are calculated explicitly, which completely determine the dynamical behavior near the bifurcation point. As an example, the Segel-Jackson predator-prey model is studied. Near the Bautin bifurcation we find the existence of fold bifurcation of periodic orbits, as well as subcritical and supercritical Hopf bifurcations. Both theoretical and numerical results indicate that solutions with small (large) initial conditions converge to stable periodic orbits (diverge to infinity).
机译:在本文中,我们提出了一种在时滞和Neumann边界条件下的反应扩散系统中Bautin分叉的正规形式的推导算法。在Bautin分叉附近的中心流形上,显式计算了第一和第二Lyapunov系数,它们完全确定了分叉点附近的动力学行为。例如,研究了Segel-Jackson捕食者-猎物模型。在鲍廷分支附近,我们发现了周期性轨道的折叠分支以及亚临界和超临界霍夫夫分支。理论和数值结果均表明,具有小(大)初始条件的解收敛于稳定的周期轨道(发散到无穷大)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号