首页> 外文期刊>Discrete and continuous dynamical systems >ASYMPTOTIC BOUNDEDNESS AND STABILITY OF SOLUTIONS TO HYBRID STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS AND THE EULER-MARUYAMA APPROXIMATION
【24h】

ASYMPTOTIC BOUNDEDNESS AND STABILITY OF SOLUTIONS TO HYBRID STOCHASTIC DIFFERENTIAL EQUATIONS WITH JUMPS AND THE EULER-MARUYAMA APPROXIMATION

机译:具有跳和欧拉-丸山逼近的混合随机微分方程解的渐近有界性和稳定性。

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we are concerned with the asymptotic properties and numerical analysis of the solution to hybrid stochastic differential equations with jumps. Applying the theory of M-matrices, we will study the pth moment asymptotic boundedness and stability of the solution. Under the non-linear growth condition, we also show the convergence in probability of the Euler-Maruyama approximate solution to the true solution. Finally, some examples are provided to illustrate our new results.
机译:在本文中,我们关注具有跳的混合随机微分方程解的渐近性质和数值分析。应用M矩阵理论,我们将研究pth矩渐近有界性和解的稳定性。在非线性增长条件下,我们还证明了Euler-Maruyama近似解与真实解的概率收敛。最后,提供一些示例来说明我们的新结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号