首页> 外文期刊>Discrete and continuous dynamical systems >MATHEMATICAL ANALYSIS OF A GENERALISED MODEL OF CHEMOTHERAPY FOR LOW GRADE GLIOMAS
【24h】

MATHEMATICAL ANALYSIS OF A GENERALISED MODEL OF CHEMOTHERAPY FOR LOW GRADE GLIOMAS

机译:低级胶质瘤化学治疗通用模型的数学分析

获取原文
获取原文并翻译 | 示例

摘要

We study mathematical properties of a model describing growth of primary brain tumours called low-grade gliomas (LGGs) and their response to chemotherapy. The motivation for considering this particular type of cancer is its large impact on society. LGGs affect mainly young adults and eventually result in death, despite the tumour growth rate being slow. The model studied consists of two non-autonomous ordinary differential equations and is a generalised version of the model proposed by Bogdanska et al. (Math. Biosci. 2017). We discuss the stability of stationary states, prove global stability of tumour-free steady state and, in some cases, justify the existence of periodic solutions. Assuming that chemotherapy effectiveness remains constant in time, we provide analytical estimates and calculate minimal doses of the drug that should eliminate the tumour for particular patients with LGGs.
机译:我们研究描述称为低度神经胶质瘤(LGGs)的原发性脑肿瘤的生长及其对化学疗法的反应模型的数学性质。考虑这种特殊类型的癌症的动机是其对社会的巨大影响。尽管肿瘤的生长速度缓慢,但LGG主要影响年轻人,并最终导致死亡。研究的模型由两个非自治常微分方程组成,是Bogdanska等人提出的模型的广义版本。 (Math.Biosci.2017年)。我们讨论稳态的稳定性,证明无肿瘤稳态的整体稳定性,并在某些情况下证明周期解​​的存在性。假设化学疗法的有效性在时间上保持不变,我们将提供分析估计值并计算出可以针对特定LGG患者消除肿瘤的最小剂量的药物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号