首页> 外文期刊>Communications in Nonlinear Science and Numerical Simulation >Mathematical and numerical analysis of low-grade gliomas model and the effects of chemotherapy
【24h】

Mathematical and numerical analysis of low-grade gliomas model and the effects of chemotherapy

机译:低度神经胶质瘤模型的数学和数值分析以及化学疗法的影响

获取原文
获取原文并翻译 | 示例

摘要

Gliomas are the most frequent type of primary brain tumour. Low-grade gliomas (LGGs) in particular are infiltrative and incurable with a slow evolution that eventually causes death. In this paper, we propose a mathematical model for the growth of LGGs and its response to chemotherapy. We validate our model with medical data and show that the proposed model describes real patients' data quite well. A mathematical analysis of the model shows the existence of a unique non-negative solution. We further investigate the stability of steady-state solutions. In particular, we demonstrate the global stability of a tumour-free equilibrium in the case of sufficiently strong constant and asymptotically periodic treatment. A sensitivity analysis of the model indicates that the proliferation rate has the biggest impact on solutions of the model. We also numerically investigate the stability of the fitting procedure. (C) 2019 Elsevier B.V. All rights reserved.
机译:神经胶质瘤是最常见的原发性脑肿瘤。低级神经胶质瘤(LGG)特别是浸润性的且无法治愈,且发展缓慢,最终导致死亡。在本文中,我们提出了LGGs生长及其对化学反应的数学模型。我们用医学数据验证了我们的模型,并表明所提出的模型很好地描述了真实患者的数据。该模型的数学分析表明存在唯一的非负解。我们进一步研究稳态解决方案的稳定性。特别是,我们证明了在足够强的恒定和渐近周期性治疗的情况下,无肿瘤平衡的整体稳定性。对模型的敏感性分析表明,扩散速率对模型的解影响最大。我们还数值研究了拟合过程的稳定性。 (C)2019 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号