首页> 外文期刊>Discrete & Computational Geometry >Asymmetry of Convex Polytopes and Vertex Index of Symmetric Convex Bodies
【24h】

Asymmetry of Convex Polytopes and Vertex Index of Symmetric Convex Bodies

机译:凸多面体的不对称性和对称凸体的顶点指数

获取原文
获取原文并翻译 | 示例

摘要

In (Gluskin, Litvak in Geom. Dedicate 90:45–48, [2002]) it was shown that a polytope with few vertices is far from being symmetric in the Banach–Mazur distance. More precisely, it was shown that Banach–Mazur distance between such a polytope and any symmetric convex body is large. In this note we introduce a new, averaging-type parameter to measure the asymmetry of polytopes. It turns out that, surprisingly, this new parameter is still very large, in fact it satisfies the same lower bound as the Banach–Mazur distance. In a sense it shows the following phenomenon: if a convex polytope with small number of vertices is as close to a symmetric body as it can be, then most of its vertices are as bad as the worst one. We apply our results to provide a lower estimate on the vertex index of a symmetric convex body, which was recently introduced in (Bezdek, Litvak in Adv. Math. 215:626–641, [2007]). Furthermore, we give the affirmative answer to a conjecture by Bezdek (Period. Math. Hung. 53:59–69, [2006]) on the quantitative illumination problem.
机译:在(Gluskin,Litvak in Geom。Dedicate 90:45-48,[2002])中,显示了一个很少顶点的多面体在Banach-Mazur距离上远非对称。更确切地说,表明这种多面体与任何对称凸体之间的Banach-Mazur距离较大。在本说明中,我们引入了一个新的平均类型参数来测量多位点的不对称性。令人惊讶的是,事实证明,这个新参数仍然很大,实际上它满足与Banach-Mazur距离相同的下界。从某种意义上说,它表现出以下现象:如果顶点数量少的凸多面体尽可能接近对称体,则其大部分顶点与最坏的顶点一样糟糕。我们应用我们的结果为对称凸体的顶点索引提供了一个较低的估计,该估计最近在(Bezdek,Litvak在Adv。Math。215:626-641,[2007]中引入)中。此外,我们对贝兹德克的猜想给出了肯定的答案(Period。Math。Hung。53:59-69,[2006])。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号