首页> 外文期刊>Discrete and continuous dynamical systems >PROPERTIES OF MULTICORRELATION SEQUENCES AND LARGE RETURNS UNDER SOME ERGODICITY ASSUMPTIONS
【24h】

PROPERTIES OF MULTICORRELATION SEQUENCES AND LARGE RETURNS UNDER SOME ERGODICITY ASSUMPTIONS

机译:一些遍历假设的多遍遍遍遍遍遍遍友好序列的性质和大返回

获取原文
获取原文并翻译 | 示例

摘要

We prove that given a measure preserving system (X, B, μ, T_1,…, T_d) with commuting, ergodic transformations T_i such that T_iT_j~(-1) are ergodic for all i ≠ j, the multicorrelation sequence a(n) = ∫_x f_o·T_1~n f_1·…·T_d~n f_d μ can be decomposed as a(n) = a_(st)(n)+a_(er)(n), where a_(st) is a uniform limit of d-step nilsequences and a_(er) is a nullsequence (that is, lim_(N-M)→∞1/(N-M)∑_(n=M)~(N-1)|a_(er)|~2 = 0). Under some additional ergodicity conditions onT_1,…,T_d we also establish a similar decomposition for polynomial multicorrelation sequences of the form a(n) = ∫_x f_0·∏_(i=1)~d T_i~(pi,1(n))f_1·…∏_(i=1)~d T_i~(pi,k(n)) f_k dμ, where each p_(i,k) : Z→Z is a polynomial map. We also show, for d = 2, that if T_1, T_2, T_1T_2~(-1) are invertible and ergodic, we have large triple intersections: for all ε > 0 and all A∈ B, the set {n∈Z: μ(A∩T_1~(-n) A∩T_2~(-n) A) >μ(A)~3 -ε} is syndetic. Moreover, we show that if T_1, T_2,T_1T_2~(-1) are totally ergodic, and we denote by p_n the n-th prime, the set {n ∈ N :μ(A∩T_1~(-(P_n)-1)A∩T_2~(-(p_n)-1)A) > μ(A)~3-ε} has positive lower density.
机译:我们证明了具有通勤的措施保存系统(x,b,μ,t_1,...,t_d),ergodic变换t_i使得t_it_j〜(-1)对于所有i∈j是ergodic,多遍遍遍遍遍遍控序列a(n) =∫_xf_o·t_1〜n f_1··t_d〜n f_dμ可以被分解为a(n)= a_(st)(n)+ a_(er)(n),其中a_(st)是均匀的d-step nilsequences和a_(er)的限制是一个nullsequence(即lim_(nm)→∞1/(nm)σ_(n = m)〜(n-1)| a_(er)|〜2 = 0)。在某些额外的遍历条件下,...,...,T_D,我们还建立了形式A(n)=∫_0·π_(i = 1)〜d t_i〜(pi,1(n)的多项式多遍遍遍遍遍遍遍遍遍遍历)f_1·...π_(i = 1)〜d t_i〜(pi,k(n))f_kdμ,其中每个p_(i,k):z→z是多项式图。我们还显示了D = 2,即如果T_1,T_2,T_1T_2〜(-1)是可逆性的并且遍历,我们有大三倍的十字路口:对于所有ε> 0和所有A1 B,集合{n∈z: μ(a∩t_1〜(-n)a∩t_2〜(-n)a)>μ(a)〜3-e}是结构的。此外,我们表明,如果t_1,t_2,t_1t_2〜(--1)完全是ergodic,并且我们表示通过p_n n-th prime,该组{n∈n:μ(a∩t_1〜( - (p_n) - 1)a∩t_2〜( - (p_n)-1)a)>μ(a)〜3-ε}具有正密度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号