首页> 外文期刊>Discrete and continuous dynamical systems >FREE BOUNDARY PROBLEM FOR A REACTION-DIFFUSION EQUATION WITH POSITIVE BISTABLE NONLINEARITY
【24h】

FREE BOUNDARY PROBLEM FOR A REACTION-DIFFUSION EQUATION WITH POSITIVE BISTABLE NONLINEARITY

机译:具有正双稳态非线性反应扩散方程的自由边界问题

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with a free boundary problem for a reaction-diffusion equation in a one-dimensional interval whose boundary consists of a fixed end-point and a moving one. We put homogeneous Dirichlet condition at the fixed boundary, while we assume that the dynamics of the moving boundary is governed by the Stefan condition. Such free boundary problems have been studied by a lot of researchers. We will take a nonlinear reaction term of positive bistable type which exhibits interesting properties of solutions such as multiple spreading phenomena. In fact, it will be proved that large-time behaviors of solutions can be classified into three types; vanishing, small spreading and big spreading. Some sufficient conditions for these behaviors are also shown. Moreover, for two types of spreading, we will give sharp estimates of spreading speed of each free boundary and asymptotic profiles of each solution.
机译:本文针对一维反应扩散方程的自由边界问题,该方程的边界由固定端点和移动端点组成。我们将齐次Dirichlet条件置于固定边界,而我们假设移动边界的动力学受Stefan条件控制。许多研究人员已经研究了这种自由边界问题。我们将采用正双稳态类型的非线性反应项,该项具有解决方案的有趣特性,例如多重扩散现象。实际上,将证明溶液的长时间行为可以分为三种类型:消失,小传播和大传播。还显示了这些行为的一些充分条件。此外,对于两种类型的扩展,我们将给出每个自由边界的扩展速度和每个解的渐近曲线的清晰估计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号