首页> 外文期刊>Discrete and continuous dynamical systems >BIFURCATION FROM INFINITY WITH APPLICATIONS TO REACTION-DIFFUSION SYSTEMS
【24h】

BIFURCATION FROM INFINITY WITH APPLICATIONS TO REACTION-DIFFUSION SYSTEMS

机译:从无穷分岔到应用到反应扩散系统

获取原文
获取原文并翻译 | 示例

摘要

The bifurcation method is one of powerful tools to study the existence of a continuous branch of solutions. However without further analysis, the local theory only ensures the existence of solutions within a small neighborhood of bifurcation point. In this paper we extend the theory of bifurcation from infinity, initiated by Rabinowitz [11] and Stuart [13], to find solutions of elliptic partial differential equations with large amplitude. For the applications to the reaction-diffusion systems, we are able to relax the conditions to obtain the bifurcation from infinity for the following nonlinear terms; (ⅰ) nonlinear terms satisfying conditions similar to [11] (all directions), (ⅱ) nonlinear terms satisfying similar conditions only on the strip domain along the direction determined by the eigenfunction, (ⅲ) p-homogeneous nonlinear terms with degenerate conditions.
机译:分叉方法是研究连续解的存在的强大工具之一。但是,未经进一步分析,局部理论只能确保在分支点的小范围内存在解。在本文中,我们扩展了Rabinowitz [11]和Stuart [13]提出的从无穷大开始的分岔理论,以找到大振幅椭圆偏微分方程的解。对于在反应扩散系统中的应用,我们能够放宽条件,以得到以下非线性项从无穷大开始的分支。 (ⅰ)满足与[11]相似的条件的非线性项(所有方向),(ⅱ)仅沿特征函数确定的方向在带域上满足相似条件的非线性项,(ⅲ)具有退化条件的p齐次非线性项。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号