首页> 外文期刊>Discrete and continuous dynamical systems >INTERMEDIATE LYAPUNOV EXPONENTS FOR SYSTEMS WITH PERIODIC ORBIT GLUING PROPERTY
【24h】

INTERMEDIATE LYAPUNOV EXPONENTS FOR SYSTEMS WITH PERIODIC ORBIT GLUING PROPERTY

机译:具有周期轨道粘合性能的系统的中间Lyapunov指数

获取原文
获取原文并翻译 | 示例

摘要

We prove that the average Lyapunov exponents of asymptotically additive functions have the intermediate value property provided the dynamical system has the periodic gluing orbit property. To be precise, consider a continuous map f : X - X over a compact metric space X and an asymp- totically additive sequence of functions Phi = {phi(n) : X - R}(n = 1). If f has the periodic gluing orbit property, then for any constant a satisfyinginf(mu is an element of Minv(f,X)) chi Phi(mu) a sup (mu is an element of Minv(f,X)) chi Phi(mu)where chi Phi(mu) = lim inf(n -infinity) integral 1 phi(n)d mu, and the infimum and supremum are taken over the set of all f-invariant probability measures, there is an ergodic measure it mu(a) is an element of M-inv (f, X) such that chi Phi(mu(a)) = a and supp(mu) = X.
机译:我们证明了渐近加和函数的平均Lyapunov指数具有中间值特性,只要该动力系统具有周期性胶合轨道特性。确切地说,考虑一个紧凑度量空间X上的连续映射f:X-> X和函数Phi = {phi(n):X-> R}(n> = 1)的渐近累加序列。如果f具有周期性胶合轨道特性,则对于任何常数,满足inf(mu是Minv(f,X)的元素)chi Phi(mu) infinity)积分1 / n phi(n)d mu,并且对所有f不变概率测度的集合取最小和最大是一项遍历测度,其中mu(a)是M-inv(f,X)的元素,使得chi Phi(mu(a))= a并且supp(mu)=X。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号