首页> 外文期刊>Discrete and continuous dynamical systems >GLOBAL WEAK SOLUTIONS TO THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS OF COMPRESSIBLE HEAT-CONDUCTING FLOWS WITH SYMMETRIC DATA AND FORCES
【24h】

GLOBAL WEAK SOLUTIONS TO THE TWO-DIMENSIONAL NAVIER-STOKES EQUATIONS OF COMPRESSIBLE HEAT-CONDUCTING FLOWS WITH SYMMETRIC DATA AND FORCES

机译:含对称数据和力的可压缩导热流二维Navier-Stokes方程的整体弱解

获取原文
获取原文并翻译 | 示例

摘要

We prove the global existence of weak solutions to the Navier-Stokes equations of compressible heat-conducting fluids in two spatial dimensions with initial data and external forces which are large and spherically symmetric. The solutions will be obtained as the limit of the approximate solutions in an annular domain. We first derive a number of regularity results on the approximate physical quantities in the "fluid region", as well as the new uniform integrability of the velocity and temperature in the entire space-time domain by exploiting the theory of the Orlicz spaces. By virtue of these a priori estimates we then argue in a manner similar to that in [Arch. Rational Mech. Anal. 173 (2004), 297-343] to pass to the limit and show that the limiting functions are indeed a weak solution which satisfies the mass and momentum equations in the entire space-time domain in the sense of distributions, and the energy equation in any compact subset of the "fluid region".
机译:我们证明了二维空间中具有可压缩导热流体的Navier-Stokes方程的弱解的全局存在性,具有初始数据和大且球形对称的外力。将获得这些解作为环形域中近似解的极限。我们首先利用Orlicz空间理论,得出有关“流体区域”中近似物理量的规律性结果,以及整个时空域中速度和温度的新均匀积分性。借助这些先验估计,我们然后以类似于[Arch。理性机械。肛门173(2004),297-343]传递到极限,表明极限函数的确是一个弱解,从分布的意义上来说,它满足整个时空域中的质量和动量方程,并且满足“流体区域”的任何紧凑子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号