首页> 外文期刊>The Journal of biological chemistry >Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells
【24h】

Superoxide Triggers an Acid Burst in Saccharomyces cerevisiae to Condition the Environment of Glucose-starved Cells

机译:超氧化物触发酿酒酵母中的酸爆发,以调节葡萄糖饥饿细胞的环境

获取原文
           

摘要

Although yeast cells grown in abundant glucose tend to acidify their extracellular environment, they raise the pH of the environment when starved for glucose or when grown strictly with non-fermentable carbon sources. Following prolonged periods in this alkaline phase, Saccharomyces cerevisiae cells will switch to producing acid. The mechanisms and rationale for this “acid burst” were unknown. Herein we provide strong evidence for the role of mitochondrial superoxide in initiating the acid burst. Yeast mutants lacking the mitochondrial matrix superoxide dismutase (SOD2) enzyme, but not the cytosolic Cu,Zn-SOD1 enzyme, exhibited marked acceleration in production of acid on non-fermentable carbon sources. Acid production is also dramatically enhanced by the superoxide-producing agent, paraquat. Conversely, the acid burst is eliminated by boosting cellular levels of Mn-antioxidant mimics of SOD. We demonstrate that the acid burst is dependent on the mitochondrial aldehyde dehydrogenase Ald4p. Our data are consistent with a model in which mitochondrial superoxide damage to Fe-S enzymes in the tricarboxylic acid (TCA) cycle leads to acetate buildup by Ald4p. The resultant expulsion of acetate into the extracellular environment can provide a new carbon source to glucose-starved cells and enhance growth of yeast. By triggering production of organic acids, mitochondrial superoxide has the potential to promote cell population growth under nutrient depravation stress.
机译:尽管葡萄糖中生长的酵母细胞倾向于酸化其细胞外环境,但它们在饥饿时或用不可发酵的碳源严格生长时,它们会提高环境的pH。在该碱性期的长时间后,酿酒酵母细胞将切换到生产酸。这种“酸爆裂”的机制和理由是未知的。在此,我们为线粒体超氧化物在启动酸爆裂时提供了强有力的证据。缺乏线粒体基质超氧化物歧化酶(SOD 2)酶(SOD 2)酶,但不是胞质溶胶,Zn-SOD1酶的酵母突变体表现出在不可发酵的碳源的酸生产中显着的加速。超氧化物生产剂,百草枯也显着增强了酸生产。相反,通过促进SOD的Mn-抗氧化模拟的细胞水平来消除酸突发。我们证明酸脉冲溶液依赖于线粒体醛脱氢酶ALD4P。我们的数据与一种模型一致,其中三羧酸(TCA)循环中对Fe-S酶的线粒体超氧化物损伤导致ALD4P的醋酸盐累积。将乙酸盐排出到细胞外环境中可以为葡萄糖饥饿细胞提供新的碳源,并增强酵母的生长。通过触发有机酸的生产,线粒体超氧化物具有促进营养脱落应激下的细胞群生长的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号