...
首页> 外文期刊>Nanomaterials >Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands
【24h】

Electrostatic Spray Deposition-Based Manganese Oxide Films—From Pseudocapacitive Charge Storage Materials to Three-Dimensional Microelectrode Integrands

机译:基于静电喷射沉积的锰氧化物薄膜 - 从伪电容电荷储存材料到三维微电极积分

获取原文

摘要

In this study, porous manganese oxide (MnO x ) thin films were synthesized via electrostatic spray deposition (ESD) and evaluated as pseudocapacitive electrode materials in neutral aqueous media. Very interestingly, the gravimetric specific capacitance of the ESD-based electrodes underwent a marked enhancement upon electrochemical cycling, from 72 F?g ?1 to 225 F?g ?1 , with a concomitant improvement in kinetics and conductivity. The change in capacitance and resistivity is attributed to a partial electrochemical phase transformation from the spinel-type hausmannite Mn 3 O 4 to the conducting layered birnessite MnO 2 . Furthermore, the films were able to retain 88.4% of the maximal capacitance after 1000 cycles. Upon verifying the viability of the manganese oxide films for pseudocapacitive applications, the thin films were integrated onto carbon micro-pillars created via carbon microelectromechanical systems (C-MEMS) for examining their application as potential microelectrode candidates. In a symmetric two-electrode cell setup, the MnO x /C-MEMS microelectrodes were able to deliver specific capacitances as high as 0.055 F?cm ?2 and stack capacitances as high as 7.4 F·cm ?3 , with maximal stack energy and power densities of 0.51 mWh·cm ?3 and 28.3 mW·cm ?3 , respectively. The excellent areal capacitance of the MnO x -MEs is attributed to the pseudocapacitive MnO x as well as the three-dimensional architectural framework provided by the carbon micro-pillars.
机译:在该研究中,通过静电喷射沉积(ESD)合成多孔锰氧化物(MNO X)薄膜,并在中性水性介质中评估为假偶联电极材料。非常有趣的是,基于ESD的电极的重量特定电容在电化学循环时经历了显着的增强,从72 f?g≤1至225f?g≤1,伴随着动力学和电导率。电容和电阻率的变化归因于来自尖晶石型Hausmannite Mn 3 O 4的部分电化学相变为导电层状的Birnedyite MNO 2。此外,在1000次循环后,薄膜能够保留88.4%的最大电容。在验证氧化锰膜的氧化锰膜的可行性后,将薄膜整合到通过碳微机电系统(C-MEMS)产生的碳微柱上,以检查其应用作为潜在的微电极候选物。在对称的双电极单元设置中,MNO X / C-MEMS微电极能够以高达0.055fα的特定电容提供高达0.055f≤x2,堆叠电容高达7.4 f·cm≤3,具有最大堆叠能量和功率密度为0.51米Whe·cm?3和28.3mw·cm?3。 MnO X -MES的优异区域电容归因于伪偶联MNO X以及由碳微柱提供的三维架构框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号