...
首页> 外文期刊>Journal of vision >An Optimal Read-Out Model of Perceptual Learning: How to Measure Task Difficulty and Learning Specificity in a Principled Manner
【24h】

An Optimal Read-Out Model of Perceptual Learning: How to Measure Task Difficulty and Learning Specificity in a Principled Manner

机译:感性学习的最佳读出模型:如何以有原则的方式衡量任务难度和学习特异性

获取原文

摘要

Task difficulty is an important determinant of the amount, speed, and specificity of perceptual learning (Ahissar & Hochstein, 1997). Yet the field lacks a principled definition of "difficulty" and resorts to ceteris paribus shortcuts instead. For example, all else being equal, high-noise conditions are more difficult than low-noise conditions, high-precision discrimination is more difficult than low-precision discrimination, etc. The problem is that such ceteris paribus assumptions are violated in learning experiments because the performance improves with practice and because of the methodological necessity to manipulate at least two independent variables -- one to define difficulty levels between subjects and another to track thresholds within subjects. Which condition is more difficult: low-precision discrimination in high noise or high-precision discrimination in low noise? A principled answer to such questions must measure the information content of a given stimulus with respect to a given discrimination task. We propose an Optimal Read-Out (ORO) Model based on the Theory of Ideal Observers (TIO, Green & Swets, 1974). The main innovation is that, whereas TIO works with the conditional probability densities of the stimuli themselves, ORO works with the densities of their V1 representations under standard assumptions about the response properties of V1 neurons (Petrov, Dosher, & Lu, 2005). The optimal discrimination boundary is defined as the locus of points in representation space where the likelihood ratio equals one. The optimal d' is calculated by integrating the "hit" and "false alarm" densities on either side of the boundary. In our implementation this involves Monte Carlo integration in 200 dimensions. The efficiency of a human observer -- the squared ratio of their behavioral d' to the optimal d' -- improves with practice and can be compared across conditions. Whereas the absolute efficiency is parameter-dependent, the relative efficiency is not, and it is the latter that is theoretically relevant.
机译:任务难度是知觉学习的数量,速度和特异性的重要决定因素(Ahissar和Hochstein,1997)。然而,该领域缺乏“困难”的原则性定义,而是诉诸ceteris paribus捷径。例如,在所有其他条件都相同的情况下,高噪声条件比低噪声条件更困难,高精度区分比低精度条件更困难,等等。问题是在学习实验中违反了这样的对等假设,因为该性能会随着实践的提高而提高,并且由于必须要有至少两个独立变量的方法论上的建议-一个变量定义受试者之间的难度级别,另一个变量追踪受试者的阈值。哪个条件更困难:高噪声中的低精度判别还是低噪声中的高精确度判别?对此类问题的原则性回答必须衡量针对特定歧视任务的特定刺激信息的内容。我们基于理想观察者理论(TIO,Green&Swets,1974)提出了一种最佳读出(ORO)模型。主要的创新之处在于,尽管TIO可以处理刺激本身的条件概率密度,但ORO可以在有关V1神经元反应特性的标准假设下使用其V1表示密度(Petrov,Dosher和Lu,2005)。最佳判别边界被定义为表示空间中似然比等于1的点的轨迹。最佳d'是通过对边界两边的“命中”和“虚警”密度进行积分来计算的。在我们的实现中,这涉及200个维度的蒙特卡洛积分。人类观察者的效率-行为d'与最佳d'的平方比-随实践而提高,可以在各种条件下进行比较。绝对效率与参数有关,而相对效率与参数无关,而后者在理论上是相关的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号