...
首页> 外文期刊>Nucleic acids research >Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster
【24h】

Genome-wide profiling of nucleosome sensitivity and chromatin accessibility in Drosophila melanogaster

机译:果蝇的核小体敏感性和染色质可及性的全基因组分析。

获取原文
           

摘要

Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to ‘phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.
机译:人们通常认为,DNA结合因子(如微球菌核酸酶(MNase))无法获得核糖体DNA。在这里,我们用高和低浓度的MNase消化果蝇染色质,以揭示两种不同的核小体类型:MNase敏感和MNase抗性。耐MNase的核小体在缺失A / T并富含G / C的二核苷酸的序列上组装,而MNase敏感的核小体在转录起始和终止位点,增强子和DNase I超敏感位点上的富含A / T的序列上形成。核小体形成能的估计表明,对MNase敏感的核小体比对MNase抗性的核小体更不稳定。令人惊讶的是,细胞生长温度降低约10°C使得MNase敏感的核小体难以接近,这表明MNase敏感性的观察到的变化与染色质纤维的热波动或酶机制的活性有关。在活性基因和DNase I高敏位点附近,核小体被组织成周期性阵列,这可能是由于“消除”了由DNA结合因子或通过外部相互作用锚定在其位置上的核小体形成的潜在屏障。我们的核小体定位和能量学生物物理模型证实了后一种想法,该模型预测,转录起始位点下游的核小体被锚定,并在活性基因上概括了核小体的定相,其效果明显好于序列依赖性模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号