首页> 外文期刊>Journal of Risk and Financial Management >CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles
【24h】

CVaR Regression Based on the Relation between CVaR and Mixed-Quantile Quadrangles

机译:基于CVaR和混合四分位数四边形之间的关系的CVaR回归

获取原文

摘要

A popular risk measure, conditional value-at-risk (CVaR), is called expected shortfall (ES)in financial applications. The research presented involved developing algorithms for theimplementation of linear regression for estimating CVaR as a function of some factors. Suchregression is called CVaR (superquantile) regression. The main statement of this paper is: CVaRlinear regression can be reduced to minimizing the Rockafellar error function with linearprogramming. The theoretical basis for the analysis is established with the quadrangle theory of riskfunctions. We derived relationships between elements of CVaR quadrangle and mixed-quantilequadrangle for discrete distributions with equally probable atoms. The deviation in the CVaRquadrangle is an integral. We present two equivalent variants of discretization of this integral,which resulted in two sets of parameters for the mixed-quantile quadrangle. For the first set ofparameters, the minimization of error from the CVaR quadrangle is equivalent to the minimizationof the Rockafellar error from the mixed-quantile quadrangle. Alternatively, a two-stage procedurebased on the decomposition theorem can be used for CVaR linear regression with both sets ofparameters. This procedure is valid because the deviation in the mixed-quantile quadrangle (calledmixed CVaR deviation) coincides with the deviation in the CVaR quadrangle for both sets ofparameters. We illustrated theoretical results with a case study demonstrating the numericalefficiency of the suggested approach. The case study codes, data, and results are posted on thewebsite. The case study was done with the Portfolio Safeguard (PSG) optimization package, whichhas precoded risk, deviation, and error functions for the considered quadrangles.
机译:一种流行的风险衡量方法是有条件的风险价值(CVaR),在金融应用中被称为预期缺口(ES)。提出的研究涉及开发用于实现线性回归的算法,以估计CVaR作为某些因素的函数。这种回归称为CVaR(超分位数)回归。本文的主要陈述是:通过线性编程,可以减少CVaRlinear回归以最小化Rockafellar误差函数。利用风险函数的四边形理论建立了分析的理论基础。我们推导了CVaR四边形元素和混合四分位数四边形元素之间的关系,该分布具有相等的可能原子。 CVaRquadrangle中的偏差是整数。我们提出了该积分离散化的两个等效变体,这导致了混合分位数四边形的两组参数。对于第一组参数,来自CVaR四边形的误差的最小化等于来自混合四分位数四边形的Rockafellar误差的最小化。可替代地,基于分解定理的两阶段过程可以用于具有两组参数的CVaR线性回归。该过程之所以有效,是因为两组参数的混合分位数四边形的偏差(称为混合CVaR偏差)与CVaR四边形的偏差一致。我们通过案例研究说明了理论结果,论证了所建议方法的数值效率。案例研究代码,数据和结果将发布在网站上。该案例研究是使用投资组合保障(PSG)优化软件包完成的,该软件包具有针对所考虑的四边形的预编码风险,偏差和误差函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号