首页> 外文期刊>Proteome science >Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR
【24h】

Identification of a novel Plasmopara halstedii elicitor protein combining de novo peptide sequencing algorithms and RACE-PCR

机译:结合从头肽测序算法和RACE-PCR鉴定新型Palsmopara halstedii激发子蛋白

获取原文

摘要

Background Often high-quality MS/MS spectra of tryptic peptides do not match to any database entry because of only partially sequenced genomes and therefore, protein identification requires de novo peptide sequencing. To achieve protein identification of the economically important but still unsequenced plant pathogenic oomycete Plasmopara halstedii, we first evaluated the performance of three different de novo peptide sequencing algorithms applied to a protein digests of standard proteins using a quadrupole TOF (QStar Pulsar i). Results The performance order of the algorithms was PEAKS online > PepNovo > CompNovo. In summary, PEAKS online correctly predicted 45% of measured peptides for a protein test data set. All three de novo peptide sequencing algorithms were used to identify MS/MS spectra of tryptic peptides of an unknown 57 kDa protein of P. halstedii. We found ten de novo sequenced peptides that showed homology to a Phytophthora infestans protein, a closely related organism of P. halstedii. Employing a second complementary approach, verification of peptide prediction and protein identification was performed by creation of degenerate primers for RACE-PCR and led to an ORF of 1,589 bp for a hypothetical phosphoenolpyruvate carboxykinase. Conclusions Our study demonstrated that identification of proteins within minute amounts of sample material improved significantly by combining sensitive LC-MS methods with different de novo peptide sequencing algorithms. In addition, this is the first study that verified protein prediction from MS data by also employing a second complementary approach, in which RACE-PCR led to identification of a novel elicitor protein in P. halstedii.
机译:背景技术胰蛋白酶肽的高质量MS / MS谱图通常不匹配任何数据库条目,因为仅部分测序了基因组,因此,蛋白质鉴定需要从头进行肽测序。为了实现对经济上重要但仍未测序的植物致病性卵菌疟原虫的鉴定,我们首先评估了使用四极TOF(QStar Pulsar i)将三种不同的从头肽测序算法应用于标准蛋白质的蛋白质消化的性能。结果算法的性能顺序为:PEAKS在线> PepNovo> CompNovo。总而言之,PEAKS在线可以正确预测蛋白质测试数据集所测肽的45%。所有这三种从头开始的肽测序算法均用于鉴定halstedii疟原虫未知57 kDa蛋白的胰蛋白酶肽的MS / MS谱图。我们发现了十种从头测序的肽,这些肽与疫霉疫霉蛋白(Paltophthora infestans蛋白)具有同源性,而该疫霉蛋白与嗜睡疫霉菌密切相关。采用第二种互补方法,通过创建简并引物进行RACE-PCR来进行肽预测和蛋白质鉴定的验证,并导致假设的磷酸烯醇丙酮酸羧激酶的ORF为1,589 bp。结论我们的研究表明,通过将灵敏的LC-MS方法与不同的从头肽测序算法相结合,可以显着改善样品材料中微量蛋白质的鉴定。此外,这是第一项通过使用第二种互补方法从MS数据验证蛋白质预测的研究,其中RACE-PCR导致了halstedii假单胞菌中新的激发子蛋白的鉴定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号