首页> 外文期刊>PLoS Genetics >Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness
【24h】

Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness

机译:基因型到表型:线粒体饮食之间的DNA单倍型相互作用驱动代谢灵活性和机体适应性

获取原文
           

摘要

Diet may be modified seasonally or by biogeographic, demographic or cultural shifts. It can differentially influence mitochondrial bioenergetics, retrograde signalling to the nuclear genome, and anterograde signalling to mitochondria. All these interactions have the potential to alter the frequencies of mtDNA haplotypes (mitotypes) in nature and may impact human health. In a model laboratory system, we fed four diets varying in Protein: Carbohydrate (P:C) ratio (1:2, 1:4, 1:8 and 1:16 P:C) to four homoplasmic Drosophila melanogaster mitotypes (nuclear genome standardised) and assayed their frequency in population cages. When fed a high protein 1:2 P:C diet, the frequency of flies harbouring Alstonville mtDNA increased. In contrast, when fed the high carbohydrate 1:16 P:C food the incidence of flies harbouring Dahomey mtDNA increased. This result, driven by differences in larval development, was generalisable to the replacement of the laboratory diet with fruits having high and low P:C ratios, perturbation of the nuclear genome and changes to the microbiome. Structural modelling and cellular assays suggested a V161L mutation in the ND4 subunit of complex I of Dahomey mtDNA was mildly deleterious, reduced mitochondrial functions, increased oxidative stress and resulted in an increase in larval development time on the 1:2 P:C diet. The 1:16 P:C diet triggered a cascade of changes in both mitotypes. In Dahomey larvae, increased feeding fuelled increased β-oxidation and the partial bypass of the complex I mutation. Conversely, Alstonville larvae upregulated genes involved with oxidative phosphorylation, increased glycogen metabolism and they were more physically active. We hypothesise that the increased physical activity diverted energy from growth and cell division and thereby slowed development. These data further question the use of mtDNA as an assumed neutral marker in evolutionary and population genetic studies. Moreover, if humans respond similarly, we posit that individuals with specific mtDNA variations may differentially metabolise carbohydrates, which has implications for a variety of diseases including cardiovascular disease, obesity, and perhaps Parkinson’s Disease. Author summary The detection and quantitation of mtDNA polymorphisms in populations and across whole habitats continues to be used as a central investigatory tool in evolutionary genetics. But, the approach is laden with assumptions about selection that are rarely examined. We present a series of studies that traverse the genotype to the phenotype. The studies were designed to experimentally test the interaction between diet and mitotype in Drosophila flies and provide a mechanism by which selection occurs. We start with population cage studies that include four laboratory diets and four mitotypes. We then directly compete two mitotypes (Alstonville and Dahomey) on a high protein and a high carbohydrate diet and show a flip in their relative fitness that is driven by differences in larval development. Next, we identify a single naturally-occurring point mutation, which drives the cage results. We track the ripple effects up to the level of the organelle (mitochondria), through the labyrinth of metabolic pathways and on to the phenotype. Notably, when flies were fed the high carbohydrate diet, energy metabolism was extensively remodelled in both mitotypes causing increased physical activity in Alstonville flies. These data invite an extensive experimental re-evaluation of the assumption that mtDNA inescapably evolves in a manner consistent with a strictly neutral equilibrium model. It also motivates investigation of genotype-specific dietary manipulation as an integrative treatment of human disorders involving mitochondrial metabolism and offers the potential for future therapeutic strategies.
机译:饮食可能会季节性改变,也可能会因生物地理,人口或文化变化而改变。它可以差异地影响线粒体的生物能学,向核基因组的逆行信号和向线粒体的顺行信号。所有这些相互作用都可能改变自然界中mtDNA单倍型(基因型)的频率,并可能影响人类健康。在模型实验室系统中,我们为四种同质果蝇黑腹果蝇(Mirosogaster)线粒体(核基因组)喂食了四种蛋白质,碳水化合物(P:C)比(1:2、1:4、1:8和1:16 P:C)的饮食标准化)并在笼子中分析它们的频率。当喂食高蛋白的1:2 P:C饮食时,携带Alstonville mtDNA的苍蝇的频率增加。相反,当喂食高碳水化合物1:16 P:C的食物时,携带达荷美mtDNA的果蝇发生率增加。由幼虫发育差异驱动的这一结果可推广到以高和低P:C比值的水果代替实验室饮食,核基因组的扰动以及微生物组的变化。结构建模和细胞分析表明,Dahomey mtDNA复合体I的ND4亚单位中的V161L突变是轻度有害的,线粒体功能降低,氧化应激增加,并导致1:2 P:C饮食的幼虫发育时间增加。 1:16的P:C饮食触发了这两种基因型的级联变化。在达荷美幼虫中,进食增加会加剧β-氧化,并绕过复杂的I突变。相反,Alstonville幼虫上调了与氧化磷酸化有关的基因,增加了糖原代谢,并且它们的物理活性更高。我们假设增加的体育活动转移了来自生长和细胞分裂的能量,从而减缓了发育。这些数据进一步质疑了在进化和种群遗传学研究中使用mtDNA作为假定的中性标记。此外,如果人类做出类似反应,我们认为具有特定mtDNA变异的个体可能会不同程度地代谢碳水化合物,这对包括心血管疾病,肥胖症和帕金森氏病在内的多种疾病都有影响。作者摘要群体和整个生境中mtDNA多态性的检测和定量仍被用作进化遗传学的主要研究工具。但是,这种方法充满了很少检查的关于选择的假设。我们提出了一系列研究,将基因型遍历为表型。这些研究旨在通过实验测试果蝇果蝇的饮食与线型之间的相互作用,并提供选择发生的机制。我们从人口笼研究开始,其中包括四种实验室饮食和四种基因型。然后,我们直接在高蛋白和高碳水化合物饮食上竞争两种基因型(Alstonville和Dahomey),并显示其相对适应性的变化,这是由幼虫发育的差异驱动的。接下来,我们确定一个自然发生的点突变,该突变会驱动笼子结果。我们通过代谢途径的迷宫和表型追踪直至细胞器(线粒体)水平的涟漪效应。值得注意的是,当给果蝇喂食高碳水化合物饮食时,两种线型的能量代谢都发生了彻底的重塑,从而导致阿尔斯顿维尔果蝇的体力活动增加。这些数据要求对mtDNA不可避免地以与严格中性平衡模型一致的方式进化的假设进行广泛的实验性重新评估。它还激发了对基因型特定饮食操作的研究,作为涉及线粒体代谢的人类疾病的综合治疗,并为未来的治疗策略提供了潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号