首页> 外文期刊>Frontiers in Human Neuroscience >Combining Multiple Resting-State fMRI Features during Classification: Optimized Frameworks and Their Application to Nicotine Addiction
【24h】

Combining Multiple Resting-State fMRI Features during Classification: Optimized Frameworks and Their Application to Nicotine Addiction

机译:分类期间结合多个静止状态功能磁共振成像特征:优化的框架及其在尼古丁成瘾中的应用

获取原文

摘要

Machine learning techniques have been applied to resting-state fMRI data to predict neurological or neuropsychiatric disease states. Existing studies have used either a single type of resting-state feature or a few feature types (<4) in the prediction model. However, resting-state data can be processed in many different ways, yielding different feature types containing complementary and/or novel information, leaving uncertain the most informative features to provide to the classifier. In this study, multiple resting-state features were calculated from two main analytical categories: local measures and network measures. Feature selection was adopted using an optimized grid-search approach selecting top ranked features from statistical tests. We then tested three optimized frameworks: feature combination, kernel combination, and classifier combination, all using the support vector machine as an elementary classifier, to combine these resting-state feature types. When applied to nicotine addiction, with a cohort size of 100 smokers and 100 non-smokers, via a 10-fold cross-validation procedure, the feature combination and the classifier combination achieved an accuracy of 75.5%, while the kernel combination achieved a 73.0% accuracy; all three combination frameworks improved classification performance compared to the single feature type based results (best accuracy 70.5%). This study not only reveals the discriminative power of resting-state data, but also demonstrates the efficiency of combining multiple features from one data phenotype to improve classification performance.
机译:机器学习技术已应用于静止状态的fMRI数据,以预测神经或神经精神疾病的状态。现有研究在预测模型中使用了单一类型的静止状态特征或少数特征类型(<4)。但是,可以用许多不同的方式来处理静止状态数据,从而产生包含补充和/或新颖信息的不同特征类型,从而不确定要提供给分类器的最有用信息。在这项研究中,从两个主要的分析类别中计算出多个静止状态特征:局部测量和网络测量。特征选择是使用优化的网格搜索方法进行的,该方法从统计测试中选择排名最高的特征。然后,我们测试了三个优化框架:特征组合,内核组合和分类器组合,所有这些都使用支持向量机作为基本分类器,以组合这些静止状态特征类型。通过10倍交叉验证程序,将烟尘成瘾应用于一组100名吸烟者和100名非吸烟者的尼古丁成瘾时,特征组合和分类器组合的准确率达到75.5%,而核心组合的准确率达到73.0 % 准确性;与基于单一要素类型的结果相比,这三个组合框架均改善了分类性能(最佳准确性为70.5%)。这项研究不仅揭示了静态数据的判别力,而且还证明了将一个数据表型的多个特征进行组合以提高分类性能的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号