...
首页> 外文期刊>Eukaryotic cell >Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan
【24h】

Cellular Processes and Pathways That Protect Saccharomyces cerevisiae Cells against the Plasma Membrane-Perturbing Compound Chitosan

机译:保护酿酒酵母细胞免受质膜干扰的复合壳聚糖的细胞过程和途径

获取原文
           

摘要

Global fitness analysis makes use of a genomic library of tagged deletion strains. We used this approach to study the effect of chitosan, which causes plasma membrane stress. The data were analyzed using T-profiler, which was based on determining the sensitivities of groups of deletion strains to chitosan, as defined by Gene Ontology (GO) and by genomic synthetic lethality screens, in combination with t statistics. The chitosan-hypersensitive groups included a group of deletion strains characterized by a defective HOG (high-osmolarity glycerol) signaling pathway, indicating that the HOG pathway is required for counteracting chitosan-induced stress. Consistent with this, activation of this pathway in wild-type cells by hypertonic conditions offered partial protection against chitosan, whereas hypotonic conditions sensitized the cells to chitosan. Other chitosan-hypersensitive groups were defective in RNA synthesis and processing, actin cytoskeleton organization, protein N-glycosylation, ergosterol synthesis, endocytosis, or cell wall formation, predicting that these cellular functions buffer the cell against the deleterious effect of chitosan. These predictions were supported by showing that tunicamycin, miconazole, and staurosporine (which target protein N-glycosylation, ergosterol synthesis, and the cell wall integrity pathway, respectively) sensitized Saccharomyces cerevisiae cells to chitosan. Intriguingly, the GO-defined group of deletion strains belonging to the “cytosolic large ribosomal subunit” was more resistant to chitosan. We propose that global fitness analysis of yeast in combination with T-profiler is a powerful tool to identify specific cellular processes and pathways that are required for survival under stress conditions.
机译:整体适应性分析利用标记缺失菌株的基因组文库。我们使用这种方法来研究壳聚糖的作用,它引起质膜应力。使用T-profiler分析数据,该分析基于确定缺失菌株组对壳聚糖的敏感性(结合基因本体论(GO)和基因组合成杀伤力筛选),结合 t 统计。壳聚糖超敏基团包括一组缺失菌株,其特征在于有缺陷的HOG(高渗甘油)信号传导途径,表明HOG途径是抵抗壳聚糖诱导的应激所必需的。与此相一致,高渗条件在野生型细胞中对该途径的激活提供了针对壳聚糖的部分保护,而低渗条件则使细胞对壳聚糖敏感。其他壳聚糖超敏基团在RNA合成和加工,肌动蛋白细胞骨架组织,蛋白质N-糖基化,麦角固醇合成,内吞作用或细胞壁形成方面存在缺陷,预示着这些细胞功能可缓冲细胞抵抗壳聚糖的有害作用。这些预测得到了证实:衣霉素,咪康唑和星形孢菌素(分别靶向蛋白质N-糖基化,麦角固醇合成和细胞壁完整性途径)使酿酒酵母细胞对壳聚糖敏感。有趣的是,属于“胞质大核糖体亚基”的GO缺失菌株组对壳聚糖的耐药性更高。我们建议与T-profiler结合使用的酵母的全局适应度分析是一种强大的工具,可用于识别在压力条件下生存所需的特定细胞过程和途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号