首页> 外文期刊>Applied Sciences >Recognition Algorithm Based on Improved FCM and Rough Sets for Meibomian Gland Morphology
【24h】

Recognition Algorithm Based on Improved FCM and Rough Sets for Meibomian Gland Morphology

机译:基于改进的FCM和粗糙集的睑板腺形态识别算法

获取原文

摘要

To overcome the limitation of artificial judgment of meibomian gland morphology, we proposed a solution based on an improved fuzzy c-means (FCM) algorithm and rough sets theory. The rough sets reduced the redundant attributes while ensuring classification accuracy, and greatly reduced the amount of computation to achieve information dimension compression and knowledge system simplification. However, before this reduction, data must be discretized, and this process causes some degree of information loss. Therefore, to maintain the integrity of the information, we used the improved FCM to make attributes fuzzy instead of discrete before continuing with attribute reduction, and thus, the implicit knowledge and decision rules were more accurate. Our algorithm overcame the defects of the traditional FCM algorithm, which is sensitive to outliers and easily falls into local optima. Our experimental results show that the proposed method improved recognition efficiency without degrading recognition accuracy, which was as high as 97.5%. Furthermore, the meibomian gland morphology was diagnosed efficiently, and thus this method can provide practical application values for the recognition of meibomian gland morphology.
机译:为了克服人工判断睑板腺形态的局限性,我们提出了一种基于改进的模糊c均值(FCM)算法和粗糙集理论的解决方案。粗糙集减少了冗余属性,同时确保了分类的准确性,并大大减少了计算量,以实现信息维压缩和知识系统简化。但是,在此减少之前,必须将数据离散化,并且此过程会导致一定程度的信息丢失。因此,为了保持信息的完整性,我们使用改进的FCM在继续进行属性约简之前使属性变得模糊而不是离散,因此隐式知识和决策规则更加准确。我们的算法克服了传统FCM算法的缺陷,该算法对异常值敏感,容易陷入局部最优。实验结果表明,该方法在不降低识别精度的前提下提高了识别效率,其识别率高达97.5%。而且,对睑板腺的形态学进行了有效的诊断,从而为识别睑板腺的形态提供了实用的应用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号