...
首页> 外文期刊>AIP Advances >Influence of a-Si:H deposition power on surface passivation property and thermal stability of a-Si:H/SiNx:H stacks
【24h】

Influence of a-Si:H deposition power on surface passivation property and thermal stability of a-Si:H/SiNx:H stacks

机译:a-Si:H沉积功率对a-Si:H / SiNx:H叠层的表面钝化性能和热稳定性的影响

获取原文
           

摘要

The effectiveness of hydrogenated amorphous silicon (a-Si:H) layers for passivating crystalline siliconsurfaces has been well documented in the literature for well over a decade. One limitation of such layers however has arisen from their inability to withstand temperatures much above their deposition temperature without significant degradation. This limitation is of importance particularly with multicrystalline silicon materials where temperatures of at least 400°C are needed for effective hydrogenation of the crystallographic defects such as grain boundaries. To address this limitation, in this work the surface passivation quality and thermal stability of a stack passivating system, combining a layer of intrinsic a-Si:H and a capping layer of silicon nitride (SiNx:H), on p-type crystalline silicon wafers is studied and optimized. In particular the sensitivity of different microwave (MW) power levels for underlying a-Si:H layer deposition are examined. Both effective minority carrier lifetime (ζeff) measurement and Fourier transform infrared (FTIR) spectrometry were employed to study the bonding configurations, passivating quality and thermal stability of the a-Si:H/SiNx:H stacks. It is established that the higher MW power could result in increased as-deposited ζeff and implied Voc (iVoc) values, indicating likely improved surface passivation quality, but that this combination degrades more quickly when exposed to prolonged thermal treatments. The more dihydride-rich film composition corresponding to the higher MW power appears to be beneficial for bond restructuring by hydrogen interchanges when exposed to short term annealing, however it also appears more susceptible to providing channels for hydrogen out-effusion which is the likely cause of the poorer thermal stability for prolonged high temperature exposure compared with stacks with underlying a-Si:H deposited with lower MW power.
机译:十多年来,氢化非晶硅(a-Si:H)层钝化结晶硅表面的有效性已在文献中得到了充分证明。然而,这种层的一个局限性是由于它们不能承受远高于其沉积温度的温度而没有明显的降解。该限制对于多晶硅材料尤其重要,在多晶硅材料中,至少需要400°C的温度才能有效地氢化晶体学缺陷(例如晶界)。为了解决这个限制,在这项工作中,在p型晶体硅上结合了本征a-Si:H层和氮化硅覆盖层(SiNx:H)的堆栈钝化系统的表面钝化质量和热稳定性研究和优化了晶圆。特别地,检查了不同的微波(MW)功率水平对于下面的a-Si:H层沉积的敏感性。有效少数载流子寿命(ζeff)测量和傅立叶变换红外(FTIR)光谱法均用于研究a-Si:H / SiNx:H堆的键合构型,钝化质量和热稳定性。可以确定的是,较高的MW功率可能会导致沉积的ζeff和隐含的Voc(iVoc)值增加,表明表面钝化质量可能会提高,但是这种组合在长时间的热处理中会更快地降解。当暴露于短期退火中时,与较高的MW功率相对应的,更富二氢化物的膜组合物似乎有利于氢交换引起的键重组,但是,它似乎也更易于提供氢向外渗出的通道,这可能是氢逸出的原因。与具有较低MW功率沉积的底层a-Si:H的电池堆相比,长时间高温暴露的热稳定性较差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号