首页> 外文期刊>Decision support systems >A decision support framework to implement optimal personalized marketing interventions
【24h】

A decision support framework to implement optimal personalized marketing interventions

机译:实施最佳个性化营销干预措施的决策支持框架

获取原文
获取原文并翻译 | 示例

摘要

In many important settings, subjects can show significant heterogeneity in response to a stimulus or "treatment." For instance, a treatment that works for the overall population might be highly ineffective, or even harmful, for a subgroup of subjects with specific characteristics. Similarly, a new treatment may not be better than an existing treatment in the overall population, but there is likely a subgroup of subjects who would benefit from it. The notion that "one size may not fit all" is becoming increasingly recognized in a wide variety of fields, ranging from economics to medicine. This has drawn significant attention to personalize the choice of treatment, so it is optimal for each individual. An optimal personalized treatment is the one that maximizes the probability of a desirable outcome. We call the task of learning the optimal personalized treatment personalized treatment learning. From the statistical learning perspective, this problem imposes important challenges, primarily because the optimal treatment is unknown on a given training set. A number of statistical methods have been proposed recently to tackle this problem. However, considering the critical importance of these methods to decision support systems, personalized treatment learning models have received relatively little attention in the literature. The purpose of this paper is to propose a novel method labeled causal conditional inference trees and its natural extension to causal conditional inference forests. The performance of the new method is analyzed and compared to alternative methods for personalized treatment learning. The results show that our new proposed method often outperforms the alternatives on the numerical settings described in this article. We also illustrate an application of the proposed method using data from a large Canadian insurer for the purpose of selecting the best targets for cross-selling an insurance product.
机译:在许多重要的环境中,受试者可能会对刺激或“治疗”产生明显的异质性。例如,对于具有特定特征的亚组受试者而言,对整个人群有效的治疗可能是非常无效的,甚至是有害的。同样,在整体人群中,新疗法可能不会比现有疗法更好,但是可能会有一部分受试者会从中受益。从经济到医学,各种各样的领域都越来越认识到“一种尺寸可能无法适应所有人”的观念。个性化治疗选择引起了极大的关注,因此对于每个人都是最佳选择。最佳的个性化治疗是最大化期望结果的可能性的治疗。我们把学习最佳个性化治疗的任务称为个性化治疗学习。从统计学习的角度来看,这个问题带来了重要的挑战,主要是因为在给定的训练集上最佳治疗方法是未知的。最近已经提出了许多统计方法来解决这个问题。然而,考虑到这些方法对决策支持系统的至关重要性,个性化治疗学习模型在文献中受到的关注相对较少。本文的目的是提出一种标记因果条件推理树的新方法,并将其自然扩展到因果条件推理森林。分析了新方法的性能,并将其与个性化治疗学习的替代方法进行了比较。结果表明,我们提出的新方法通常在本文介绍的数值设置方面优于其他方法。我们还举例说明了该方法的应用,该方法使用了来自加拿大一家大型保险公司的数据,目的是为交叉销售保险产品选择最佳目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号