首页> 外文期刊>Data & Knowledge Engineering >Hierarchy construction and classification of heterogeneous information networks based on RSDAEf
【24h】

Hierarchy construction and classification of heterogeneous information networks based on RSDAEf

机译:基于RSDAEF的异构信息网络的层次结构和分类

获取原文
获取原文并翻译 | 示例

摘要

Heterogeneous information networks (HINs) composed of multiple types of nodes and links, play increasingly important roles in real life applications. Classification of the related data is an essential work in network analysis. Existing methods can effectively solve these classification tasks when they are applied to homogeneous information networks and simple data, but not for the noisy and sparse data. To address the problem, we propose Stacked Denoising Auto Encoder (SDAE) with sparse factors to learn features of nodes in heterogeneous networks. In particular, sparse factors are added in each hidden layer of the proposed stacked denoising auto-encoder to efficiently extract features from noisy and sparse data. Moreover, a relax strategy is employed to construct class hierarchy with high-quality based. Finally, nodes of the heterogeneous information network can be classified. Our proposed framework Relax strategy on Stacked Denoising Auto Encoder with sparse factors (RSDAEf) comparison with several existing methods clearly indicates RSDAEf outperforms the existing methods and achieves a classification precision of 88.3% on DBLP dataset.
机译:异构信息网络(HIN)由多种类型的节点和链接组成,在现实生活中扮演越来越重要的角色。相关数据的分类是网络分析的重要工作。当它们应用于同一信息网络和简单数据时,现有方法可以有效地解决这些分类任务,但不适用于嘈杂和稀疏数据。为了解决这个问题,我们提出了堆积的去噪自动编码器(SDAE),具有稀疏因素来学习异构网络中节点的特征。特别地,在所提出的堆叠的去噪自动编码器的每个隐藏层中添加了稀疏因素,以有效地从嘈杂和稀疏数据中提取特征。此外,采用放松策略来构建具有高质量的等级层次。最后,可以对异构信息网络的节点进行分类。我们所提出的框架放松了堆积的去噪自动编码器的策略,具有稀疏因素(RSDAEF)与几种现有方法的比较清楚地表示RSDAEF优于现有方法,并在DBLP数据集中实现88.3%的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号