首页> 外文期刊>Data & Knowledge Engineering >Spatio-temporal outlier detection algorithms based on computing behavioral outlierness factor
【24h】

Spatio-temporal outlier detection algorithms based on computing behavioral outlierness factor

机译:基于行为异常值因子的时空异常值检测算法

获取原文
获取原文并翻译 | 示例

摘要

A major task in spatio-temporal outlier detection is to identify objects that exhibit abnormal behavior either spatially, and/or temporally. There have only been a few algorithms proposed for detecting spatial and/or temporal outliers. One example is the Local Density-Based Spatial Clustering of Applications with Noise (LDBSCAN). Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is mainly for clustering; it just tells us whether an object belongs to a cluster or it is an outlier. A measure known as Local Outlier Factor (LOF) gives a quantitative measure of outlierness to each object, where a high LOF score means it is potentially an outlier. LDBSCAN algorithm, which combines the above notions, considers only the spatial context. Furthermore, the notion of a cluster is defeated (i.e. LDBSCAN may report clusters having less than the minimum required points in a cluster), and some of the outliers may not be detected because of the limitation of the existing conditions in the LDBSCAN algorithm. In this paper, we propose two algorithms, namely Spatio-Temporal Behavioral Density-based Clustering of Applications with Noise (ST-BDBCAN) and Approx-ST-BDBCAN. ST-BDBCAN algorithm adopts the proposed, new concept, called Spatio-Temporal Behavioral Outlier Factor (ST-BOF), which is a spatio-temporal extension to LOF. It also uses both spatial and temporal attributes simultaneously to define the context. By doing so, the relative importance of spatial continuity or temporal continuity appropriate to the application at hand can be established. The Approx-ST-BDBCAN algorithm achieves improved scalability, with minimal loss of detection accuracy by partitioning data points for parallel processing. Experimental results on synthetic, and buoy datasets suggest that our proposed algorithms are accurate and computationally efficient. Additionally, new Outlier Association with Hurricane Intensity Index (OAHU) measures are introduced for quantitative evaluation of the results from buoy dataset.
机译:时空离群检测的主要任务是识别在空间和/或时间上表现出异常行为的对象。仅提出了几种用于检测空间和/或时间离群值的算法。一个示例是带噪声的应用程序的基于局部密度的空间聚类(LDBSCAN)。基于密度的噪声应用空间聚类(DBSCAN)主要用于聚类;它只是告诉我们对象是属于集群还是离群值。称为局部离群值因子(LOF)的量度可以定量度量每个对象的离群值,其中高LOF得分意味着它可能是离群值。结合了以上概念的LDBSCAN算法仅考虑空间上下文。此外,群集的概念被打败(即LDBSCAN可能报告群集中的群集少于所需的最低点的群集),并且由于LDBSCAN算法中现有条件的限制,可能无法检测到某些异常值。在本文中,我们提出了两种算法,即基于时空行为密度的噪声应用聚类(ST-BDBCAN)和Approx-ST-BDBCAN。 ST-BDBCAN算法采用了提出的新概念,即时空行为离群因子(ST-BOF),它是LOF的时空扩展。它还同时使用空间和时间属性来定义上下文。这样,可以确定适合于当前应用程序的空间连续性或时间连续性的相对重要性。 Approx-ST-BDBCAN算法通过划分数据点以进行并行处理,从而实现了改进的可伸缩性,同时最小化了检测精度损失。在合成数据和浮标数据集上的实验结果表明,我们提出的算法准确且计算效率高。此外,还引入了新的具有飓风强度指数(OAHU)的异常值协会,用于对浮标数据集的结果进行定量评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号