首页> 外文期刊>Cybernetics and Systems >New learning method for cellular neural networks template based on combination between rough sets and genetic programming
【24h】

New learning method for cellular neural networks template based on combination between rough sets and genetic programming

机译:基于粗糙集与遗传规划相结合的细胞神经网络模板学习新方法

获取原文
获取原文并翻译 | 示例

摘要

A new learning algorithm for space invariant Cellular Neural Network (CNN) is introduced. Learning is formulated as an optimization problem by combining rough sets and genetic programming. Rough Sets approach has been selected for creating priori knowledge about the actual effective cells, determining their significance in classifying the output, and discovering the optimal CNN structure. According to the lattice of CNN architecture and depending on the priori knowledge gained by rough sets, genetic programming will be used in deriving the cloning template. Exploration of any stable domain is possible by the current approach. Details of the algorithm are discussed and several application results are shown.
机译:介绍了一种新的空间不变细胞神经网络学习算法。通过将粗糙集和遗传规划相结合,将学习表述为优化问题。已选择粗糙集方法来创建有关实际有效单元的先验知识,确定其在分类输出中的重要性以及发现最佳的CNN结构。根据CNN体系结构的格子,并根据通过粗糙集获得的先验知识,将使用遗传编程来获得克隆模板。通过当前方法可以探索任何稳定域。讨论了该算法的详细信息,并显示了一些应用结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号