首页> 外文期刊>Cybernetics and Systems Analysis >USING THE MONTE CARLO METHOD FOR FAST SIMULATION OF THE NUMBER OF 'GOOD' PERMUTATIONS ON THE SCIT-4 MULTIPROCESSOR COMPUTER COMPLEX
【24h】

USING THE MONTE CARLO METHOD FOR FAST SIMULATION OF THE NUMBER OF 'GOOD' PERMUTATIONS ON THE SCIT-4 MULTIPROCESSOR COMPUTER COMPLEX

机译:使用蒙特卡洛方法快速仿真SCIT-4多处理器计算机复合体上的“良好”置换数量

获取原文
获取原文并翻译 | 示例

摘要

A permutation (s_0,s_1,...,s_(N-1)) of symbols 0,1,..., N-1 is called "good" if the set (t_0,t_1,...,t_(N-1)) formed by the rule t_i =i+s_i (mod N), i = 0,1,..., N -1, is also a permutation. The author proposes the fast simulation method. Its implementation on the SCIT-4 multiprocessor computer complex makes it possible to evaluate the number of "good" permutations for N ≤ 305 with relative accuracy no greater than 1%. The number of "good" permutations is estimated for N =25,35, ...,305.
机译:如果集合(t_0,t_1,...,t_()为零,则将符号0,1,...,N-1的排列(s_0,s_1,...,s_(N-1))称为“好”。由规则t_i = i + s_i(mod N),i = 0,1,...,N -1形成的N-1)也是一个置换。作者提出了一种快速仿真方法。它在SCIT-4多处理器计算机复合体上的实现使得可以评估N≤305的“良好”排列的数量,相对精度不超过1%。估计“好”排列的数量为N = 25,35,...,305。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号