首页> 外文期刊>Cybernetics, IEEE Transactions on >Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems
【24h】

Multiple Populations for Multiple Objectives: A Coevolutionary Technique for Solving Multiobjective Optimization Problems

机译:多目标的多个种群:解决多目标优化问题的协同进化技术

获取原文
获取原文并翻译 | 示例

摘要

Traditional multiobjective evolutionary algorithms (MOEAs) consider multiple objectives as a whole when solving multiobjective optimization problems (MOPs). However, this consideration may cause difficulty to assign fitness to individuals because different objectives often conflict with each other. In order to avoid this difficulty, this paper proposes a novel coevolutionary technique named multiple populations for multiple objectives (MPMO) when developing MOEAs. The novelty of MPMO is that it provides a simple and straightforward way to solve MOPs by letting each population correspond with only one objective. This way, the fitness assignment problem can be addressed because the individuals' fitness in each population can be assigned by the corresponding objective. MPMO is a general technique that each population can use existing optimization algorithms. In this paper, particle swarm optimization (PSO) is adopted for each population, and coevolutionary multiswarm PSO (CMPSO) is developed based on the MPMO technique. Furthermore, CMPSO is novel and effective by using an external shared archive for different populations to exchange search information and by using two novel designs to enhance the performance. One design is to modify the velocity update equation to use the search information found by different populations to approximate the whole Pareto front (PF) fast. The other design is to use an elitist learning strategy for the archive update to bring in diversity to avoid local PFs. CMPSO is comprehensively tested on different sets of benchmark problems with different characteristics and is compared with some state-of-the-art algorithms. The results show that CMPSO has superior performance in solving these different sets of MOPs.
机译:传统的多目标进化算法(MOEA)在解决多目标优化问题(MOP)时会整体考虑多个目标。但是,由于不同的目标经常相互冲突,因此这种考虑可能会给将适合性分配给个人造成困难。为了避免这种困难,本文提出了一种新颖的协同进化技术,在开发MOEA时将其称为多目标多种群(MPMO)。 MPMO的新颖之处在于,它通过让每个人口仅对应一个目标来提供一种简单直接的方法来解决MOP。这样,可以解决适应度分配问题,因为可以通过相应的目标分配每个人群中的个体适应度。 MPMO是一种通用技术,每个人口都可以使用现有的优化算法。本文针对每个种群采用粒子群优化算法(PSO),并基于MPMO技术开发了协同进化的多群PSO算法(CMPSO)。此外,CMPSO是新颖且有效的,它通过使用针对不同人群的外部共享档案库来交换搜索信息,并使用两种新颖的设计来提高性能。一种设计是修改速度更新方程,以使用由不同总体找到的搜索信息来快速近似整个帕累托前沿(PF)。另一种设计是对档案更新使用精英学习策略,以引入多样性以避免本地PF。 CMPSO已针对具有不同特征的不同基准问题集进行了全面测试,并与一些最新算法进行了比较。结果表明,CMPSO在解决这些不同的MOP集方面具有卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号