...
首页> 外文期刊>Cybernetics, IEEE Transactions on >VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model
【24h】

VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model

机译:vor适应使用尖峰的小脑模型对人形ICUB机器人的适应

获取原文
获取原文并翻译 | 示例

摘要

We embed a spiking cerebellar model within an adaptive real-time (RT) control loop that is able to operate a real robotic body (iCub) when performing different vestibulo-ocular reflex (VOR) tasks. The spiking neural network computation, including event- and time-driven neural dynamics, neural activity, and spike-timing dependent plasticity (STDP) mechanisms, leads to a nondeterministic computation time caused by the neural activity volleys encountered during cerebellar simulation. This nondeterministic computation time motivates the integration of an RT supervisor module that is able to ensure a well-orchestrated neural computation time and robot operation. Actually, our neurorobotic experimental setup (VOR) benefits from the biological sensory motor delay between the cerebellum and the body to buffer the computational overloads as well as providing flexibility in adjusting the neural computation time and RT operation. The RT supervisor module provides for incremental countermeasures that dynamically slow down or speed up the cerebellar simulation by either halting the simulation or disabling certain neural computation features (i.e., STDP mechanisms, spike propagation, and neural updates) to cope with the RT constraints imposed by the real robot operation. This neurorobotic experimental setup is applied to different horizontal and vertical VOR adaptive tasks that are widely used by the neuroscientific community to address cerebellar functioning. We aim to elucidate the manner in which the combination of the cerebellar neural substrate and the distributed plasticity shapes the cerebellar neural activity to mediate motor adaptation. This paper underlies the need for a two-stage learning process to facilitate VOR acquisition.
机译:我们在自适应实时(RT)控制回路中嵌入了一个尖峰小钟模型,当执行不同的前vestibulo-OCULLOCLEFLEX(VOR)任务时,能够操作真正的机器人身体(ICUB)。尖峰神经网络计算,包括事件和时间驱动的神经动力学,神经活动和尖峰定时依赖性可塑性(STDP)机制导致由在小脑模拟期间遇到的神经活动vlleys引起的非定值计算时间。这种无限制的计算时间激发了能够确保策划良好的神经计算时间和机器人操作的RT Supervisor模块的集成。实际上,我们的神经毒性实验设置(VOR)从小脑和身体之间的生物感官电动机延迟中受益于缓冲计算过载,以及在调整神经计算时间和RT操作时提供灵活性。 RT Supervisor模块提供了通过停止模拟或禁用某些神经计算特征(即,STDP机制,Spike传播和神经更新)来动态减慢或加速小脑模拟来应对施加的RT约束真正的机器人操作。该神经毒性实验设置应用于神经科学界广泛使用的不同水平和垂直VOR自适应任务,以解决小脑功能。我们的目的是阐明小脑神经基质和分布塑性的组合形状的方式使大脑神经活动造成介导电动机适应。本文提出了两阶段学习过程的需要,以促进VOR获取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号