首页> 外文期刊>IEEE Robotics and Automation Letters >A Cerebellar Internal Models Control Architecture for Online Sensorimotor Adaptation of a Humanoid Robot Acting in a Dynamic Environment
【24h】

A Cerebellar Internal Models Control Architecture for Online Sensorimotor Adaptation of a Humanoid Robot Acting in a Dynamic Environment

机译:在动态环境中作用的类人机器人在线感知运动适应的小脑内部模型控制体系结构

获取原文
获取原文并翻译 | 示例
           

摘要

Humanoid robots are often supposed to operate in non-deterministic human environments, and as a consequence, the robust and gentle rejection of the external perturbations is extremely crucial. In this scenario, stable and accurate behavior is mostly solved through adaptive control mechanisms that learn an internal model to predict the consequences of the outgoing control signals. Evidences show that brain-based biological systems resolve this control issue by updating an appropriate internal model that is then used to direct the muscles activities. Inspired by the biological cerebellar internal models theory, that couples forward and inverse internal models into the biological motor control scheme, we propose a novel methodology to artificially replicate these learning and adaptive principles into a robotic feedback controller. The proposed cerebellar-like network combines machine learning, artificial neural network, and computational neuroscience techniques to deal with all the nonlinearities and complexities that modern robotic systems could present. Although the architecture is tested on the simulated humanoid iCub, it can be applied to different robotic systems without excessive customization, thanks to its neural network-based nature. During the experiments, the robot is requested to follow repeatedly a movement while it is interacting with two external systems. Four different internal model architectures are compared and tested under different conditions. The comparison of the performances confirmed the theories about internal models combinatory action. The combination of models together with the structural and learning features of the network, resulted in a benefit to the adaptation mechanism, but also the system response to nonlinearities, noise and external forces.
机译:人形机器人通常应该在不确定的人类环境中运行,因此,强大而温和地拒绝外部干扰至关重要。在这种情况下,稳定和准确的行为主要通过自适应控制机制解决,该机制学习内部模型以预测输出控制信号的后果。有证据表明,基于大脑的生物系统通过更新适当的内部模型来解决此控制问题,然后将其用于指导肌肉活动。受生物小脑内部模型理论的启发,该模型将正向和反向内部模型耦合到生物运动控制方案中,我们提出了一种新颖的方法,可将这些学习和自适应原理人工复制到机器人反馈控制器中。拟议的类似小脑的网络结合了机器学习,人工神经网络和计算神经科学技术,以应对现代机器人系统可能呈现的所有非线性和复杂性。尽管该架构已在模拟人形生物iCub上进行了测试,但由于其基于神经网络的特性,因此无需过多定制即可将其应用于不同的机器人系统。在实验过程中,要求机器人在与两个外部系统交互时重复跟随运动。在不同条件下比较和测试了四种不同的内部模型架构。性能的比较证实了有关内部模型联合作用的理论。将模型与网络的结构和学习功能结合在一起,不仅有利于自适应机制,而且有利于系统对非线性,噪声和外力的响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号