首页> 外文期刊>Cybernetics, IEEE Transactions on >Efficient Representation and Approximation of Model Predictive Control Laws via Deep Learning
【24h】

Efficient Representation and Approximation of Model Predictive Control Laws via Deep Learning

机译:深入学习的高效表示与模型预测控制法的近似

获取原文
获取原文并翻译 | 示例

摘要

We show that artificial neural networks with rectifier units as activation functions can exactly represent the piecewise affine function that results from the formulation of model predictive control (MPC) of linear time-invariant systems. The choice of deep neural networks is particularly interesting as they can represent exponentially many more affine regions compared to networks with only one hidden layer. We provide theoretical bounds on the minimum number of hidden layers and neurons per layer that a neural network should have to exactly represent a given MPC law. The proposed approach has a strong potential as an approximation method of predictive control laws, leading to a better approximation quality and significantly smaller memory requirements than previous approaches, as we illustrate via simulation examples. We also suggest different alternatives to correct or quantify the approximation error. Since the online evaluation of neural networks is extremely simple, the approximated controllers can be deployed on low-power embedded devices with small storage capacity, enabling the implementation of advanced decision-making strategies for complex cyber-physical systems with limited computing capabilities.
机译:我们表明,具有整流单元作为激活功能的人工神经网络可以精确地表示来自模型预测控制(MPC)的线性时间不变系统的配方产生的分段仿射功能。深度神经网络的选择特别有趣,因为与只有一个隐藏层的网络相比,它们可以代表许多仿射区域。我们在每层的最小隐藏层和神经元的最小数量上提供理论界限,即神经网络应该必须完全代表给定的MPC法。当我们通过模拟示例说明时,所提出的方法具有强大的预测控制法的近似方法,导致更好的近似质量和比以前的方法更小的内存要求。我们还建议纠正或量化近似误差的不同替代方案。由于对神经网络的在线评估非常简单,因此可以在具有小存储容量的低功耗嵌入式设备上部署近似的控制器,从而实现具有有限计算能力的复杂网络物理系统的高级决策策略。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号