首页> 外文期刊>Cybernetics, IEEE Transactions on >High-Order Temporal Correlation Model Learning for Time-Series Prediction
【24h】

High-Order Temporal Correlation Model Learning for Time-Series Prediction

机译:时间序列预测的高阶时间相关模型学习

获取原文
获取原文并翻译 | 示例

摘要

Time-series prediction has become a prominent challenge, especially when the data are described as sequences of multiway arrays. Because noise and redundancy may exist in the tensor representation of a time series, we focus on solving the problem of high-order time-series prediction under a tensor decomposition framework and develop two novel multilinear models: 1) the multilinear orthogonal autoregressive (MOAR) model and 2) the multilinear constrained autoregressive (MCAR) model. The MOAR model is designed to preserve as much information as possible from the original tensorial data under orthogonal constraints. The MCAR model is an enhanced version that is developed by replacing orthogonal constraints with an inverse decomposition error term. For both models, we project the original tensor into subspaces spanned by basis matrices to facilitate the discovery of the intrinsic temporal structure embedded in the original tensor. To build connections among consecutive slices of the tensor, we generalize a traditional autoregressive model to tensor form to better preserve the temporal smoothness. Experiments conducted on four publicly available datasets demonstrate that our proposed methods converge within a small number of iterations during the training stage and achieve promising results compared with state-of-the-art methods.
机译:时间序列预测已成为一个突出的挑战,特别是当数据被描述为多道阵列的序列时。因为时间序列的张量表示中可能存在噪声和冗余,所以我们专注于解决张量分解框架下的高阶时间序列预测的问题,并开发两种新型多线性型号:1)多线性正交归类(Moar)模型和2)多线性约束自动增加(MCAR)模型。 Moar模型旨在从正交约束下的原始张力数据中保持尽可能多的信息。 MCAR模型是一种增强版本,该版本是通过用反应分解错误项的正交约束而开发的。对于两种模型,我们将原始张量投影为基矩阵跨越的子空间,以便于发现嵌入原始张量中的内在时间结构。为了在连续的张量的切片中建立连接,我们将传统的自回归模型概括为张量形式,以更好地保持时间平滑度。在四个公共数据集上进行的实验表明,我们的建议方法在培训阶段期间少量迭代融合,并与最先进的方法相比,实现了有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号