首页> 外文期刊>Current Bioinformatics >Computational Methods for the Prediction of the Structure and Interactions of Coiled-Coil Peptides
【24h】

Computational Methods for the Prediction of the Structure and Interactions of Coiled-Coil Peptides

机译:螺旋卷曲肽结构与相互作用预测的计算方法

获取原文
获取原文并翻译 | 示例

摘要

The past several years have seen significant advances in the development of computational methods for the prediction of the structure and interactions of coiled-coil peptides. These methods are generally based on pairwise correlations of amino acids, helical propensity, thermal melts and the energetics of sidechain interactions, as well as statistical patterns based on Hidden Markov Model (HMM) and Support Vector Machine (SVM) techniques. These methods are complemented by a number of public databases that contain sequences, motifs, domains and other details of coiled-coil structures identified by various algorithms. Some of these computational methods have been developed to make predictions of coiled-coil structure on the basis of sequence information; however, structural predictions of the oligomerisation state of these peptides still remains largely an open question due to the dynamic behaviour of these molecules. This review focuses on existing in silico methods for the prediction of coiled-coil peptides of functional importance using sequence and/or three-dimensional structural data.
机译:在过去的几年中,在预测卷曲螺旋肽的结构和相互作用的计算方法方面取得了重大进展。这些方法通常基于氨基酸,螺旋倾向,热熔和侧链相互作用的能量的成对相关性,以及基于隐马尔可夫模型(HMM)和支持向量机(SVM)技术的统计模式。这些方法得到了许多公共数据库的补充,这些数据库包含序列,基序,结构域和通过各种算法识别出的卷曲螺旋结构的其他详细信息。这些计算方法中的一些已经被开发出来,以基于序列信息来预测线圈结构。然而,由于这些分子的动态行为,这些肽的寡聚化状态的结构预测在很大程度上仍然是一个悬而未决的问题。这篇综述着重介绍了使用序列和/或三维结构数据预测功能上重要的卷曲螺旋肽的现有计算机方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号