首页> 外文期刊>Control Theory & Applications, IET >Computed force control system using functional link radial basis function network with asymmetric membership function for piezo-flexural nanopositioning stage
【24h】

Computed force control system using functional link radial basis function network with asymmetric membership function for piezo-flexural nanopositioning stage

机译:基于功能链接径向基函数网络和不对称隶属函数的压弯纳米定位平台计算力控制系统

获取原文
获取原文并翻译 | 示例

摘要

A computed force control system using functional link radial basis function network with asymmetric membership function (FLRBFN-AMF) for three-dimension motion control of a piezo-flexural nanopositioning stage (PFNS) is proposed in this study. First, the dynamics of the PFNS mechanism with the introduction of a lumped uncertainty including the equivalent hysteresis friction force are derived. Then, a computed force control system with an auxiliary control is proposed for the tracking of the reference contours with improved steady-state response. Since the dynamic characteristics of the PFNS are non-linear and time varying, a computed force control system using FLRBFN-AMF is designed to improve the control performance for the tracking of various reference trajectories, where the FLRBFN-AMF is employed to estimate a non-linear function including the lumped uncertainty of the PFNS. Moreover, by using the asymmetric membership function, the learning capability of the networks can be upgraded and the number of fuzzy rules can be optimised for the functional link radial basis function network. Furthermore, the adaptive learning algorithms for the training of the parameters of the FLRBFN-AMF online are derived using the Lyapunov stability theorem. Finally, some experimental results for the tracking of various reference contours of the PFNS are given to demonstrate the validity of the proposed control system.
机译:提出了一种基于功能链接径向基函数网络的不对称隶属函数计算力控制系统(FLRBFN-AMF),用于压电挠曲纳米定位平台(PFNS)的三维运动控制。首先,推导了PFNS机构的动力学,引入了包括等效磁滞摩擦力在内的总不确定性。然后,提出了一种带有辅助控制的计算力控制系统,用于跟踪具有改进的稳态响应的参考轮廓。由于PFNS的动态特性是非线性且随时间变化的,因此设计了一种使用FLRBFN-AMF的计算力控制系统,以改善跟踪各种参考轨迹的控制性能,其中FLRBFN-AMF用于估算非参考力。 -线性函数,包括PFNS的总不确定性。此外,通过使用非对称隶属函数,可以提高网络的学习能力,并且可以为功能链接径向基函数网络优化模糊规则的数量。此外,使用Lyapunov稳定性定理导出了用于在线训练FLRBFN-AMF参数的自适应学习算法。最后,给出了跟踪PFNS各种参考轮廓的一些实验结果,以证明所提出的控制系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号