首页> 外文期刊>Mathematical Problems in Engineering >Radial Basis Functional Link Network and Hamilton Jacobi Issacs for Force/Position Control in Robotic Manipulation
【24h】

Radial Basis Functional Link Network and Hamilton Jacobi Issacs for Force/Position Control in Robotic Manipulation

机译:径向基函数链接网络和Hamilton Jacobi Issacs用于机器人操纵中的力/位置控制

获取原文
获取原文并翻译 | 示例

摘要

This paper works on hybrid force/position control in robotic manipulation and proposes an improved radial basis functional (RBF) neural network, which is a robust relying on the Hamilton Jacobi Issacs principle of the force control loop. The method compensates uncertainties in a robot system by using the property of RBF neural network. The error approximation of neural network is regarded as an external interference of the system, and it is eliminated by the robust control method. Since the conventionally fixed structure of RBF network is not optimal, resource allocating network (RAN) is proposed in this paper to adjust the network structure in time and avoid the underfit. Finally the advantage of system stability and transient performance is demonstrated by the numerical simulations.
机译:本文研究了机器人操纵中的混合力/位置控制,并提出了一种改进的径向基函数(RBF)神经网络,该网络牢固地依赖于力控制回路的Hamilton Jacobi Issacs原理。该方法利用RBF神经网络的特性来补偿机器人系统中的不确定性。神经网络的误差逼近被视为系统的外部干扰,并通过鲁棒控制方法消除了误差。由于RBF网络的传统固定结构不是最佳的,因此本文提出了一种资源分配网络(RAN),以及时调整网络结构,避免网络不足。最后,通过数值仿真证明了系统稳定性和暂态性能的优势。

著录项

  • 来源
    《Mathematical Problems in Engineering》 |2012年第1期|p.23-32|共10页
  • 作者单位

    Institute of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China;

    Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University,Qinhuangdao 066004, China;

    Key Lab of Industrial Computer Control Engineering of Hebei Province, Yanshan University,Qinhuangdao 066004, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号